清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Blurry dense object extraction based on buffer parsing network for high-resolution satellite remote sensing imagery

计算机科学 边界(拓扑) 解析 人工智能 对象(语法) 计算机视觉 模式识别(心理学) 数学 数学分析
作者
Dingyuan Chen,Yanfei Zhong,Ailong Ma,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:207: 122-140 被引量:4
标识
DOI:10.1016/j.isprsjprs.2023.11.007
摘要

Despite the remarkable progress of deep learning-based object extraction in revealing the number and boundary location of geo-objects for high-resolution satellite imagery, it still faces challenges in accurately extracting blurry dense objects. Unlike general objects, blurry dense objects have limited spatial resolution, leading to inaccurate and connected boundaries. Even with the improved spatial resolution and recent boundary refinement methods for general object extraction, connected boundaries may remain undetected in blurry dense object extraction if the gap between object boundaries is less than the spatial resolution. This paper proposes a blurry dense object extraction method named the buffer parsing network (BPNet) for satellite imagery. To solve the connected boundary problem, a buffer parsing module is designed for dense boundary separation. Its essential component is a buffer parsing architecture that comprises a boundary buffer generator and an interior/boundary parsing step. This architecture is instantiated as a dual-task mutual learning head that co-learns the mutual information between the interior and boundary buffer, which estimates the dependence between the dual-task outputs. Specifically, the boundary buffer head generates a buffer region that overlaps with the interior, enabling the architecture to learn the dual-task bias and assign a reliable semantic in the overlapping region through high-confidence voting. To alleviate the inaccurate boundary location problem, BPNet incorporates a high-frequency refinement module for blurry boundary refinement. This module includes a high-frequency enhancement unit to enhance high-frequency signals at the blurry boundaries and a cascade buffer parsing refinement unit that integrates the buffer parsing architecture coarse-to-fine to recover the boundary details progressively. The proposed BPNet framework is validated on two representative blurry dense object datasets for small vehicle and agricultural greenhouse object extraction. The results indicate the superior performance of the BPNet framework, achieving 25.25% and 73.51% in contrast to the state-of-the-art PointRend method, which scored 21.92% and 63.95% in the AP50segm metric on two datasets, respectively. Furthermore, the ablation analysis of the super-resolution and building extraction methods demonstrates the significance of high-quality boundary details for subsequent practical applications, such as building vectorization. The code is available at: https://github.com/Dingyuan-Chen/BPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研搬运工完成签到,获得积分10
3秒前
唠叨的祥发布了新的文献求助10
4秒前
6秒前
8秒前
HEAUBOOK应助斯文的傲珊采纳,获得10
13秒前
coolkid应助smile采纳,获得10
20秒前
20秒前
唠叨的祥完成签到,获得积分10
27秒前
斯文的傲珊完成签到,获得积分10
28秒前
32秒前
陈秋完成签到,获得积分10
32秒前
追梦完成签到,获得积分10
34秒前
sjx_13351766056完成签到 ,获得积分10
34秒前
皮皮完成签到 ,获得积分10
35秒前
38秒前
HEIKU应助smile采纳,获得10
40秒前
Jasper应助自觉亦绿采纳,获得10
44秒前
smile完成签到,获得积分10
52秒前
乐正怡完成签到 ,获得积分0
52秒前
月儿完成签到 ,获得积分10
53秒前
北斗HH完成签到,获得积分0
53秒前
布通完成签到,获得积分10
54秒前
55秒前
自觉亦绿发布了新的文献求助10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
默默完成签到 ,获得积分10
1分钟前
科研通AI5应助自觉亦绿采纳,获得50
1分钟前
Song完成签到 ,获得积分10
1分钟前
jeronimo完成签到,获得积分10
1分钟前
优雅含灵完成签到 ,获得积分10
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
terryok完成签到 ,获得积分10
1分钟前
martiniwine完成签到 ,获得积分10
1分钟前
bookgg完成签到 ,获得积分10
1分钟前
orixero应助nojego采纳,获得10
1分钟前
ii完成签到 ,获得积分10
2分钟前
Connie完成签到,获得积分10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847856
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561722
捐赠科研通 3110924
什么是DOI,文献DOI怎么找? 1714585
邀请新用户注册赠送积分活动 825289
科研通“疑难数据库(出版商)”最低求助积分说明 775471