Simulating human mobility with a trajectory generation framework based on diffusion model

弹道 扩散 计算机科学 地理 物理 热力学 天文
作者
Chen Chu,Hengcai Zhang,Peixiao Wang,Feng Lu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:38 (5): 847-878 被引量:5
标识
DOI:10.1080/13658816.2024.2312199
摘要

Most mobility modeling methods are designed to solve specific tasks, leading to questions regarding their deficiency in generalizability. Inspired by the bloom of foundation models, we proposed a Trajectory Generation framework based on the Diffusion Model (TrajGDM) to capture the universal mobility pattern in a trajectory dataset by learning the trajectory generation process. The process is modeled as a step-by-step uncertainty-reducing process, in which a deep learning network with a novel training method is proposed to learn from the process. We compared the proposed trajectory generation method with six baselines on two public trajectory datasets. The results showed that the similarity between the generated and real trajectory movements measured by the Jensen-Shannon Divergence improved significantly on both datasets. Moreover, we applied zero-shot inferences on two basic trajectory tasks: trajectory prediction and trajectory reconstruction. The accuracy improved by a maximum of 25.6% on two tasks. The universal mobility pattern that is suitable for solving multiple trajectory tasks is verified, inferring the strong generalizability of our model. Finally, the study provides insights into artificial intelligence's understanding of human mobility by exploring the way the model maps the trajectory in the latent space into reality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助花花采纳,获得10
刚刚
章若楠发布了新的文献求助10
1秒前
爆米花应助小红采纳,获得10
2秒前
充电宝应助chen采纳,获得10
3秒前
3秒前
墨浮发布了新的文献求助30
3秒前
4秒前
4秒前
在水一方应助qq采纳,获得10
5秒前
ypzhu完成签到,获得积分10
5秒前
zgt01发布了新的文献求助10
5秒前
6秒前
在水一方应助muyangsiyuan采纳,获得10
6秒前
大地瓜完成签到,获得积分10
7秒前
sunny完成签到,获得积分10
7秒前
PengHu完成签到,获得积分10
8秒前
研友_ngX12Z发布了新的文献求助10
8秒前
小李发布了新的文献求助10
8秒前
丘比特应助复杂棒球采纳,获得10
8秒前
9秒前
Kevin完成签到,获得积分10
12秒前
张zhang发布了新的文献求助10
12秒前
暴躁的访波完成签到,获得积分10
13秒前
慕青应助798采纳,获得10
14秒前
章若楠完成签到,获得积分10
14秒前
15秒前
文盲完成签到,获得积分10
15秒前
李健应助优美鱼采纳,获得10
16秒前
火星上雁枫完成签到 ,获得积分10
17秒前
18秒前
19秒前
Jasper应助暴躁的信封采纳,获得10
19秒前
21秒前
21秒前
科研通AI5应助虚幻的玉米采纳,获得10
21秒前
21秒前
21秒前
只是虚瘦完成签到,获得积分20
22秒前
Fangfang完成签到,获得积分10
24秒前
WeiSS发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783481
求助须知:如何正确求助?哪些是违规求助? 3328651
关于积分的说明 10238076
捐赠科研通 3043956
什么是DOI,文献DOI怎么找? 1670750
邀请新用户注册赠送积分活动 799845
科研通“疑难数据库(出版商)”最低求助积分说明 759149