Searching for Structure: Characterizing the Protein Conformational Landscape with Clustering-Based Algorithms

聚类分析 二面角 拉马钱德兰地块 最大值和最小值 球状蛋白 层次聚类 蛋白质结构 算法 计算机科学 物理 结晶学 人工智能 化学 数学 分子 数学分析 氢键 核磁共振 量子力学
作者
Amanda C. Macke,Jacob E. Stump,Maria S. Kelly,Jamie Rowley,Vageesha Herath,Sarah Mullen,Ruxandra I. Dima
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.3c01511
摘要

The identification and characterization of the main conformations from a protein population are a challenging and inherently high-dimensional problem. Here, we evaluate the performance of the Secondary sTructural Ensembles with machine LeArning (StELa) double-clustering method, which clusters protein structures based on the relationship between the φ and ψ dihedral angles in a protein backbone and the secondary structure of the protein, thus focusing on the local properties of protein structures. The classification of states as vectors composed of the clusters’ indices arising naturally from the Ramachandran plot is followed by the hierarchical clustering of the vectors to allow for the identification of the main features of the corresponding free energy landscape (FEL). We compare the performance of StELa with the established root-mean-squared-deviation (RMSD)-based clustering algorithm, which focuses on global properties of protein structures and with Combinatorial Averaged Transient Structure (CATS), the combinatorial averaged transient structure clustering method based on distributions of the φ and ψ dihedral angle coordinates. Using ensembles of conformations from molecular dynamics simulations of intrinsically disordered proteins (IDPs) of various lengths (tau protein fragments) or short fragments from a globular protein, we show that StELa is the clustering method that identifies many of the minima and relevant energy states around the minima from the corresponding FELs. In contrast, the RMSD-based algorithm yields a large number of clusters that usually cover most of the FEL, thus being unable to distinguish between states, while CATS does not sample well the FELs for long IDPs and fragments from globular proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助coconut采纳,获得10
1秒前
桐桐应助无敌赖东东采纳,获得10
1秒前
Akim应助hhheke采纳,获得10
1秒前
整齐行云发布了新的文献求助10
1秒前
2秒前
月秋发布了新的文献求助10
2秒前
2秒前
澎湃发布了新的文献求助10
3秒前
3秒前
里予发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
HaHa007发布了新的文献求助10
5秒前
华仔应助啦啦啦采纳,获得10
6秒前
7秒前
瓜瓜诚发布了新的文献求助10
7秒前
8秒前
汪汪给汪汪的求助进行了留言
8秒前
beichuanheqi发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
Hello应助馒头吃不起采纳,获得10
11秒前
12秒前
12秒前
红宝石设计局完成签到,获得积分10
13秒前
dd发布了新的文献求助10
13秒前
传奇3应助xd采纳,获得10
14秒前
14秒前
俏皮凡儿发布了新的文献求助10
15秒前
烟花应助小余采纳,获得10
15秒前
jia完成签到 ,获得积分10
16秒前
zxhdwhy完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助20
17秒前
17秒前
17秒前
kkkkk发布了新的文献求助10
18秒前
18秒前
希望天下0贩的0应助Twilight采纳,获得10
18秒前
在水一方应助蓝蓝娜娜采纳,获得10
18秒前
年年完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4677587
求助须知:如何正确求助?哪些是违规求助? 4054932
关于积分的说明 12538661
捐赠科研通 3749065
什么是DOI,文献DOI怎么找? 2070839
邀请新用户注册赠送积分活动 1099816
科研通“疑难数据库(出版商)”最低求助积分说明 979403