SLPA-Net: a real-time recognition network for intelligent stomata localization and phenotypic analysis

表型 软件 计算机科学 人工智能 稳健性(进化) 性状 生物系统 生物 模式识别(心理学) 遗传学 基因 程序设计语言
作者
Xiaohui Yang,Y.P. Wang,Minghui Wu,Li Fan,C. Zhou,Lijun Yang,Chen Zheng,Yong Li,Zhi Li,Siyi Guo,Chun‐Peng Song
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tcbb.2024.3364208
摘要

Plant stomatal phenotype traits play an important role in improving crop water use efficiency, stress resistance and yield. However, at present, the acquisition of phenotype traits mainly relies on manual measurement, which is time-consuming and laborious. In order to obtain high-throughput stomatal phenotype traits, we proposed a real-time recognition network SLPA-Net for stomata localization and phenotypic analysis. After locating and identifying stomatal density data, ellipse fitting is used to automatically obtain phenotype data such as apertures. Aiming at the problems of small stomata and high similarity to background, we introduced ECANet to improve the accuracy of stoma and aperture location. In order to effectively alleviate the unbalance problem in bounding box regression, we replaced the Loss function with a more effective Focal EIoU Loss. The experimental results show that SLPA-Net has excellent performance in the migration generalization and robustness of stomata and apertures detection and identification, as well as the correlation between stomata phenotype data obtained and artificial data. For convenience, we developed SLPA-Net into a freely available software, the software can be obtained at https://github.com/AITAhenu/SLPA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助橙汁采纳,获得10
刚刚
所所应助时尚的初柔采纳,获得10
刚刚
lu发布了新的文献求助10
1秒前
tt完成签到,获得积分10
2秒前
张超完成签到,获得积分10
2秒前
小马甲应助高大威猛先生采纳,获得10
2秒前
杨柳依依完成签到,获得积分10
3秒前
3秒前
卿願完成签到,获得积分10
3秒前
NexusExplorer应助4归0采纳,获得10
4秒前
马外奥发布了新的文献求助10
4秒前
xiaomuaixuexi关注了科研通微信公众号
4秒前
wsh123发布了新的文献求助10
6秒前
内向映安发布了新的文献求助10
6秒前
科研通AI5应助zhenliu采纳,获得10
6秒前
6秒前
7秒前
善学以致用应助微笑晓丝采纳,获得10
8秒前
gy1991发布了新的文献求助10
9秒前
爆米花应助Hyccccc采纳,获得10
9秒前
莉拉完成签到,获得积分10
10秒前
11秒前
义气珩发布了新的文献求助10
11秒前
胡月发布了新的文献求助10
13秒前
14秒前
负责铅笔发布了新的文献求助100
14秒前
14秒前
科研通AI2S应助望北采纳,获得30
15秒前
充电宝应助孙文远采纳,获得10
15秒前
15秒前
蓝冰完成签到,获得积分10
16秒前
张超发布了新的文献求助10
17秒前
吹吹发布了新的文献求助10
18秒前
18秒前
hulin123发布了新的文献求助20
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807180
求助须知:如何正确求助?哪些是违规求助? 3352033
关于积分的说明 10356632
捐赠科研通 3067986
什么是DOI,文献DOI怎么找? 1684822
邀请新用户注册赠送积分活动 809913
科研通“疑难数据库(出版商)”最低求助积分说明 765795