Lightweight Context-Aware Network Using Partial-Channel Transformation for Real-Time Semantic Segmentation

背景(考古学) 符号 计算机科学 分割 转化(遗传学) 推论 人工智能 人工神经网络 算法 理论计算机科学 数学 算术 古生物学 生物化学 化学 基因 生物
作者
Min Shi,Shaowen Lin,Qingming Yi,Jian Weng,Aiwen Luo,Yicong Zhou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7401-7416 被引量:19
标识
DOI:10.1109/tits.2023.3348631
摘要

Optimizing the computational efficiency of the artificial neural networks is crucial for resource-constrained platforms like autonomous driving systems. To address this challenge, we proposed a Lightweight Context-aware Network (LCNet) that accelerates semantic segmentation while maintaining a favorable trade-off between inference speed and segmentation accuracy in this paper. The proposed LCNet introduces a partial-channel transformation (PCT) strategy to minimize computing latency and hardware requirements of the basic unit. Within the PCT block, a three-branch context aggregation (TCA) module expands the feature receptive fields, capturing multiscale contextual information. Additionally, a dual-attention-guided decoder (DD) recovers spatial details and enhances pixel prediction accuracy. Extensive experiments on three benchmarks demonstrate the effectiveness and efficiency of the proposed LCNet model. Remarkably, a smaller model LCNet $_{3\_7}$ achieves 73.8% mIoU with only 0.51 million parameters, with an impressive inference speed of $\sim$ 142.5 fps and $\sim$ 9 fps using a single RTX 3090 GPU and Jetson Xavier NX, respectively, on the Cityscapes test set at $1024\times 1024$ resolution. A more accurate version of the LCNet $_{3\_11}$ can achieve 75.8% mIoU with 0.74 million parameters at $\sim$ 117 fps inference speed on Cityscapes at the same resolution. Much faster inference speed can be achieved at smaller image resolutions. LCNet strikes a great balance between computational efficiency and prediction capability for mobile application scenarios. The code is available at https://github.com/lztjy/LCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冉冰发布了新的文献求助10
刚刚
刚刚
拉塞尔....完成签到,获得积分10
刚刚
feizai9527发布了新的文献求助10
1秒前
Dreamsli完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
共享精神应助TvT采纳,获得10
2秒前
少年狂完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
侯小叶完成签到 ,获得积分10
3秒前
3秒前
3秒前
狄百招发布了新的文献求助10
4秒前
Bellamie完成签到 ,获得积分20
4秒前
feimengxia完成签到 ,获得积分10
4秒前
qwt发布了新的文献求助10
5秒前
贪玩凡阳发布了新的文献求助30
5秒前
5秒前
ee发布了新的文献求助10
5秒前
隐形曼青应助稳重傲柔采纳,获得10
6秒前
Walder发布了新的文献求助10
6秒前
感谢有你完成签到 ,获得积分10
7秒前
科研通AI5应助gc采纳,获得10
7秒前
7秒前
7秒前
少年狂发布了新的文献求助30
7秒前
8秒前
cdercder应助花花采纳,获得10
8秒前
sunshine应助花花采纳,获得10
8秒前
8秒前
8秒前
浮熙完成签到 ,获得积分10
9秒前
eve完成签到,获得积分20
9秒前
9秒前
wanci应助开心的西瓜采纳,获得10
9秒前
Mark发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796116
求助须知:如何正确求助?哪些是违规求助? 3341123
关于积分的说明 10304336
捐赠科研通 3057684
什么是DOI,文献DOI怎么找? 1677795
邀请新用户注册赠送积分活动 805683
科研通“疑难数据库(出版商)”最低求助积分说明 762732