外骨骼
控制理论(社会学)
控制器(灌溉)
人工神经网络
Lyapunov稳定性
感知器
弹道
计算机科学
多层感知器
理论(学习稳定性)
李雅普诺夫函数
MATLAB语言
控制工程
工程类
人工智能
模拟
控制(管理)
机器学习
非线性系统
天文
物理
量子力学
农学
生物
操作系统
作者
Farid Kenas,Nadia Saadia,Amina Ababou,Noureddine Ababou
摘要
Summary This article presents a Model‐Free Adaptive Nonsingular Fast Terminal Sliding Mode Controller with Super Twisting and Multi‐Layer Perceptron (MLP) neural network for motion control of a 10 DOFs lower limb exoskeleton used in rehabilitation. The proposed controller employs a second‐order ultra‐local model to replace the complex dynamics of the exoskeleton and uses an MLP neural network to estimate the lumped disturbance of the ultra‐local model. To ensure accurate tracking of the desired trajectory and address the estimation errors of the MLP, an Adaptive Nonsingular Fast Terminal Sliding Mode Controller is introduced. Moreover, a Super Twisting approach is employed to eliminate the chattering phenomenon. The system's stability is analyzed using Lyapunov theory, and the desired trajectories are obtained from surface electromyography (EMG) signal measurements. The effectiveness of the proposed controller is validated through co‐simulation experiments using SolidWorks, Simscape Multibody, and MATLAB/Robotics Toolbox. Results demonstrate significant improvements in stability and precision compared to existing model‐free controllers.
科研通智能强力驱动
Strongly Powered by AbleSci AI