计算机科学
直方图均衡化
人工智能
目标检测
计算机视觉
自适应直方图均衡化
直方图
对比度增强
性能增强
对象(语法)
对比度(视觉)
图像增强
模式识别(心理学)
绩效改进
图像(数学)
工程类
医学
运营管理
磁共振成像
物理医学与康复
放射科
标识
DOI:10.1109/icce-berlin58801.2023.10375676
摘要
This paper proposes a selective low-light enhancement algorithm and integrated NMS (Non-Maximum Suppression) operation to improve the accuracy and performance of object detection in low-light environments. The method involves selectively enhancing low-light images by applying the CLHAE (Contrast Limited Adaptive Histogram Equalization) algorithm to generate improved images. The improved and original images are then simultaneously fed into the object detection network, and the NMS is applied to remove redundant detections and obtain the final results. The proposed approach is evaluated on the ExDark dataset, demonstrating superior performance compared to existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI