Early prediction of MOOC dropout in self-paced students using deep learning

辍学(神经网络) 计算机科学 深度学习 学习分析 人工智能 机器学习
作者
Wen Xiao,Juan Hu
出处
期刊:Interactive Learning Environments [Taylor & Francis]
卷期号:: 1-18 被引量:3
标识
DOI:10.1080/10494820.2023.2300000
摘要

To address three issues identified in previous research this study proposes a clustering-based MOOC dropout identification method and an early prediction model based on deep learning. The MOOC learning behavior of self-paced students was analyzed, and two well-known MOOC datasets were used for analysis and validation. The findings are as follows: Firstly, the dropout rate among self-paced students in MOOCs exceeds 90%, with over 50% of students participating in online learning activities for only one day. Furthermore, the starting dates for students in the same course differ significantly. Secondly, leveraging early learning behavior and relevant background features, the proposed early prediction model accurately predicts over 98% of dropout cases and identifies over 50% of engaged students. Through training, the model's convolutional kernels capture meaningful weights for different days and activities. Lastly, background features related to students and courses have a more significant impact on dropout rates. The utilization of resources such as videos and active participation in learning activities, like asking questions, demonstrate a particularly significant influence on dropout rates. Notably, there is no fixed period that consistently affects dropout rates. These method and findings provide effective strategies for decreasing dropout rates and improving student engagement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三里墩头应助昏睡的无春采纳,获得10
1秒前
Hightowerliu18完成签到,获得积分10
4秒前
5秒前
6秒前
9秒前
阔达翠彤完成签到,获得积分10
9秒前
吐泡泡的奇异果完成签到,获得积分10
12秒前
maomao发布了新的文献求助10
12秒前
Rinsana完成签到,获得积分10
12秒前
12秒前
afterall完成签到 ,获得积分10
13秒前
16秒前
kinly199完成签到,获得积分20
17秒前
20秒前
寒冷的绿真完成签到 ,获得积分10
21秒前
不知名混子完成签到 ,获得积分10
21秒前
吃点水果保护局完成签到 ,获得积分10
21秒前
绿麦盲区完成签到 ,获得积分10
24秒前
24秒前
银河打工人应助洪山老狗采纳,获得10
24秒前
26秒前
小鬼頭发布了新的文献求助10
27秒前
Akim应助Charlieite采纳,获得10
29秒前
科研通AI2S应助谢佳冀采纳,获得10
30秒前
鲸落完成签到,获得积分10
30秒前
甘木鸣完成签到 ,获得积分10
30秒前
牛头人完成签到,获得积分10
30秒前
ZY完成签到 ,获得积分10
30秒前
34秒前
yu完成签到,获得积分10
34秒前
小广完成签到,获得积分10
36秒前
36秒前
芬枫疯完成签到 ,获得积分10
36秒前
37秒前
燃点完成签到,获得积分10
37秒前
科研通AI5应助小鬼頭采纳,获得10
38秒前
领导范儿应助暴走火箭筒采纳,获得10
39秒前
是真的完成签到 ,获得积分10
39秒前
miuu完成签到,获得积分10
41秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776393
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207833
捐赠科研通 3037129
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870