Collaborative Learning at the Edge for Air Pollution Prediction

计算机科学 MQTT公司 GSM演进的增强数据速率 机器学习 测距 人工智能 空气质量指数 协作学习 边缘设备 数据建模 实时计算 物联网 数据库 嵌入式系统 云计算 电信 操作系统 物理 气象学 知识管理
作者
I Nyoman Kusuma Wardana,Julian W. Gardner,Suhaib A. Fahmy
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3341116
摘要

The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep-learning (DL) model performance. Research on collaborative learning at the edge has not specifically focused so far on air quality prediction, which is the subject of this work. We compare three collaborative learning strategies and implement them on edge devices, such as the Raspberry Pi and Jetson Nano, with communication facilitated through the MQTT protocol. Federated learning (FL) is shown to enhance model accuracy in comparison to local training alone. An approach called clustered model exchange reduces communication costs during training. Finally, our proposed spatiotemporal data exchange approach exploits information from neighboring sensing stations to enhance model performance. It achieves the highest accuracy in air quality predictions, outperforming other methods in minimizing loss during training. It results in RMSE improvements ranging from 0.525% to 8.934% when compared to models that are only trained locally. We compare the real training costs of the three methods on real hardware to validate them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rora完成签到 ,获得积分10
刚刚
lllll完成签到,获得积分10
1秒前
1秒前
充电宝应助金雪采纳,获得10
2秒前
上官若男应助小酒窝采纳,获得10
2秒前
2秒前
吃猫的鱼发布了新的文献求助10
3秒前
3秒前
1111完成签到,获得积分10
3秒前
Little发布了新的文献求助10
4秒前
4秒前
李健应助儒雅新波采纳,获得10
4秒前
迷路诗蕊发布了新的文献求助10
4秒前
tomato039完成签到,获得积分10
5秒前
徐先生1106完成签到,获得积分10
5秒前
科研通AI5应助DK采纳,获得10
6秒前
6秒前
洪对对发布了新的文献求助10
6秒前
hahah发布了新的文献求助10
6秒前
unite 小丘完成签到,获得积分10
7秒前
高婧红关注了科研通微信公众号
7秒前
勤劳的曼易完成签到,获得积分10
7秒前
胖虎啊发布了新的文献求助10
7秒前
yy完成签到,获得积分10
7秒前
李健应助诺笙采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
良辰应助科研通管家采纳,获得10
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
MX应助科研通管家采纳,获得20
8秒前
无花果应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
久伴久爱完成签到 ,获得积分10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得30
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226