清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High-throughput soybean pods high-quality segmentation and seed-per-pod estimation for soybean plant breeding

交货地点 分割 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 生物 农学 语言学 哲学
作者
Si Yang,Lihua Zheng,Tingting Wu,Shi Sun,Man Zhang,Minzan Li,Minjuan Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107580-107580 被引量:8
标识
DOI:10.1016/j.engappai.2023.107580
摘要

Accurately identifying soybean pods is a crucial prerequisite for retrieving multi-phenotypic traits (such as number of pods per plant, number of seeds per pod, pod size, pod color, and pod shape). However, the traditional manual measurement approach for pod phenotype investigation is time-consuming and labor-intensive, particularly when counting the number of seeds per pod. Furthermore, existing instance segmentation methods designed for coarse-grained classification are inadequate for precise seed-per-pod estimation. To address these challenges, we modified an instance segmentation network for high-throughput soybean pods high-quality segmentation and accurate seed-per-pod estimation. We modified the classification branch of the instance segmentation network Mask Transfiner (Ke et al., 2022) by increasing the resolution of feature map of each Region of Interest (RoI) region, incorporating a dual attention mechanism, and leveraging a center loss function, named RefinePod. To overcome the limitation of scarce labeled data, we modified our synthesizing image method to automatedly generate fine-labeled multi-class soybean pods images. We then train RefinePod purely with these synthetic images. Subsequently, we evaluate the trained model on both synthetic and real test images. Experimental results demonstrate a significant improvement in the accuracy of seed-per-pod estimation achieved by RefinePod. Additionally, we conduct ablation experiments to analyze the individual contributions of each strategy employed in RefinePod. In summary, RefinePod achieves remarkable results in seed-per-pod estimation accuracy by integrating advanced techniques and leveraging synthetic images for training. Our findings highlight the potential of RefinePod for accelerating soybean phenotype investigation, enabling more efficient agricultural research and crop improvement initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尔玉完成签到 ,获得积分10
6秒前
胖胖橘完成签到 ,获得积分10
13秒前
MQ完成签到 ,获得积分10
18秒前
zzgpku完成签到,获得积分0
43秒前
43秒前
yaoyaoyao完成签到 ,获得积分10
48秒前
和谐的夏岚完成签到 ,获得积分10
52秒前
Lina完成签到 ,获得积分10
56秒前
香蕉觅云应助紧张的海露采纳,获得10
56秒前
开放访天完成签到 ,获得积分10
1分钟前
Alger完成签到,获得积分10
1分钟前
1分钟前
FashionBoy应助紧张的海露采纳,获得10
1分钟前
gincle完成签到 ,获得积分10
1分钟前
piaoaxi完成签到 ,获得积分10
1分钟前
1分钟前
Jupiter 1234发布了新的文献求助10
1分钟前
1分钟前
Jupiter 1234完成签到,获得积分10
1分钟前
冬菊完成签到 ,获得积分10
1分钟前
lhn完成签到 ,获得积分10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
ww完成签到,获得积分10
2分钟前
2分钟前
2分钟前
陈辉完成签到,获得积分10
2分钟前
王饱饱完成签到 ,获得积分10
2分钟前
nojego完成签到,获得积分10
2分钟前
arsenal完成签到 ,获得积分10
3分钟前
QIU完成签到 ,获得积分10
3分钟前
saddamalsalfi完成签到,获得积分10
3分钟前
3分钟前
TEY完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
滕皓轩发布了新的文献求助30
4分钟前
SYLH应助滕皓轩采纳,获得30
4分钟前
852应助紧张的海露采纳,获得10
4分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843282
求助须知:如何正确求助?哪些是违规求助? 3385530
关于积分的说明 10540738
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710890
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308