宽温域锂电池电解液研究进展

计算机科学
作者
Jianmin Ma,Xiu Li,Shihan Qi,Zhongsheng Wang,Kanglong Guo
出处
期刊:Kexue tongbao [Science China Press]
标识
DOI:10.1360/tb-2022-0659
摘要

Lithium-ion batteries have gained great success in energy storage market due to their high energy density and long cycling life. However, it is necessary to further increase energy density, prolong life-span and enhance rate performance. Moreover, exploring more application scenarios is another important development direction for lithium batteries. Application scenarios of polar exploration, space exploration require lithium batteries to meet the demand on working at low temperature, whereas application scenarios of oil industry, robot extreme detection need lithium batteries to operate at high temperature. Unfortunately, traditional lithium batteries can only operate well in the temperature range of 15–35°C. Therefore, to develop lithium battery with wide temperature range is urgent. Too low or high temperature has negative influences on lithium batteries. In general, too low operating temperature can cause the stronger interaction between Li+ and solvent molecules, increase viscosity and decrease salt solubility, leading to sluggish kinetic process of electrochemical reaction. As a result, internal resistance increases and reversible capacity decreases for lithium batteries. In addition, too low operating temperature may change the electrochemical reaction path. For example, at low temperature, Li+, which should be embedded into graphite anode in an electric field, may be reduced on the surface of graphite anode, forming dendrites and endangering the safety of the battery. It will cause safety risk for lithium-ion batteries. At high temperature, the solubility of lithium salt will increase, reducing the stability of electrode/electrolyte interphase. The side reactions, including electrolyte decomposition, transition metal ions dissolution, cathode crystal structure damage, are more possible to react. As a result, the cycling stability of lithium batteries decreases at high temperature. The key to solve the above problems is to develop a wide-temperature range electrolytes for lithium batteries. In recent years, some research advances have been achieved in this field. For low temperature electrolyte, using solvents with low freezing point, low viscosity is indispensable, to ensure the enough kinetics rate of electrochemical reaction. To weaken the too strong interaction between Li+ and solvent molecules caused by low temperature, using ether-based or fluoro-carbonate solvent are effective. Besides, to build electrode/electrolyte interphase with high Li+ diffusion rate can also increase the electrochemical performance of low-temperature lithium batteries. For high-temperature electrolyte, using solvents with high boiling point, high flash point is necessary. To build highly stable electrode/electrolyte interphase is helpful to suppress electrolyte decomposition and improve electrode structure stability. Eliminating impurities is also important for high temperature electrolyte. To summarize those research advances is necessary and urgent. In this review, the research and development progress of lithium battery electrolytes with wide temperature range are discussed. The contents include the choices of solvent and lithium salt, the influence on electrode/electrolyte interphase at extreme temperatures, high-temperature and low-temperature electrolytes. In addition, some outlook also be provided at last, from new characterization techniques, novel lithium battery systems, and the opportunity brought from extreme temperatures. While impressive research work continues to be reported, manufacturing and application of lithium batteries with a wide temperature range remain challenging. It is expected that this review can help the development of lithium battery electrolytes with wide temperature range.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助危机的冷风采纳,获得10
3秒前
4秒前
8秒前
9秒前
12秒前
爱学习的小白完成签到 ,获得积分10
12秒前
14秒前
16秒前
18秒前
007完成签到 ,获得积分10
18秒前
善良的冰颜完成签到 ,获得积分10
21秒前
危机的冷风完成签到,获得积分20
21秒前
JETSTREAM完成签到,获得积分10
21秒前
甜美无剑发布了新的文献求助10
22秒前
大气亦巧发布了新的文献求助30
25秒前
ZHou完成签到,获得积分10
26秒前
天上白玉京完成签到,获得积分10
27秒前
27秒前
透明人完成签到,获得积分10
27秒前
30秒前
31秒前
33秒前
科研通AI5应助ZHou采纳,获得10
33秒前
35秒前
39秒前
今夕是何年完成签到 ,获得积分10
39秒前
万能图书馆应助欧凰采纳,获得30
40秒前
我是老大应助balabala采纳,获得10
41秒前
44秒前
大气亦巧完成签到,获得积分10
44秒前
46秒前
48秒前
48秒前
49秒前
霸气的思柔完成签到,获得积分10
51秒前
52秒前
渊澄完成签到 ,获得积分10
52秒前
53秒前
balabala发布了新的文献求助10
53秒前
自觉的向日葵完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415