Semi-supervised multi-modal medical image segmentation with unified translation

计算机科学 分割 人工智能 情态动词 机器学习 杠杆(统计) 注释 模态(人机交互) 特征(语言学) 监督学习 图像分割 模式识别(心理学) 翻译(生物学) 人工神经网络 化学 生物化学 信使核糖核酸 高分子化学 基因 语言学 哲学
作者
Huajun Sun,Jia Wei,Wenguang Yuan,Rui Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:176: 108570-108570 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108570
摘要

The two major challenges to deep-learning-based medical image segmentation are multi-modality and a lack of expert annotations. Existing semi-supervised segmentation models can mitigate the problem of insufficient annotations by utilizing a small amount of labeled data. However, most of these models are limited to single-modal data and cannot exploit the complementary information from multi-modal medical images. A few semi-supervised multi-modal models have been proposed recently, but they have rigid structures and require additional training steps for each modality. In this work, we propose a novel flexible method, semi-supervised multi-modal medical image segmentation with unified translation (SMSUT), and a unique semi-supervised procedure that can leverage multi-modal information to improve the semi-supervised segmentation performance. Our architecture capitalizes on unified translation to extract complementary information from multi-modal data which compels the network to focus on the disparities and salient features among each modality. Furthermore, we impose constraints on the model at both pixel and feature levels, to cope with the lack of annotation information and the diverse representations within semi-supervised multi-modal data. We introduce a novel training procedure tailored for semi-supervised multi-modal medical image analysis, by integrating the concept of conditional translation. Our method has a remarkable ability for seamless adaptation to varying numbers of distinct modalities in the training data. Experiments show that our model exceeds the semi-supervised segmentation counterparts in the public datasets which proves our network's high-performance capabilities and the transferability of our proposed method. The code of our method will be openly available at https://github.com/Sue1347/SMSUT-MedicalImgSegmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无辜吐司完成签到 ,获得积分10
刚刚
Sarah完成签到,获得积分10
1秒前
小橙完成签到 ,获得积分10
1秒前
1秒前
小七发布了新的文献求助10
1秒前
梨凉完成签到,获得积分10
2秒前
丝梦发布了新的文献求助10
2秒前
2秒前
袁田完成签到,获得积分10
3秒前
呼呼呼完成签到,获得积分10
3秒前
3秒前
Jrssion发布了新的文献求助10
3秒前
尹妮妮发布了新的文献求助10
3秒前
卫川影发布了新的文献求助10
4秒前
13831555290发布了新的文献求助10
4秒前
俊秀的思山完成签到,获得积分10
4秒前
4秒前
库库写论文完成签到,获得积分10
5秒前
Lucas应助炙热书雪采纳,获得10
5秒前
Jasper应助纯真凌雪采纳,获得10
6秒前
CipherSage应助阿涵采纳,获得10
6秒前
6秒前
李爱国应助哲000采纳,获得10
6秒前
花醉折枝完成签到,获得积分10
7秒前
7秒前
钩子89发布了新的文献求助10
7秒前
Dxc完成签到,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
许甜甜鸭应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
doo完成签到,获得积分10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得30
8秒前
JamesPei应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
iNk应助一事无成的研一采纳,获得20
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838043
求助须知:如何正确求助?哪些是违规求助? 3380287
关于积分的说明 10513442
捐赠科研通 3099903
什么是DOI,文献DOI怎么找? 1707264
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772750