STEP: Generating Semantic Text Embeddings with Prompt

计算机科学 文字2vec 自然语言处理 人工智能 变压器 判决 嵌入 水准点(测量) 语言模型 语义相似性 深度学习 情报检索 大地测量学 电压 物理 地理 量子力学
作者
Wen‐Qiang Cao,Qing Li,Siying Zhang,Rixin Xu,Youqi Li
标识
DOI:10.1109/cbd63341.2023.00040
摘要

In recent years, semantic embeddings for text has played a bigger role in the field of natural language processing (NLP), additionally, it has shown great potential in real-life applications like search and recommendation systems. Therefore, models for generating semantic text embeddings have received extensive study. State-of-the-art solutions for text embeddings have evolved from traditional methods (like Word2Vec, Glove, etc.) to deep neural network based solutions (such as LSTM, Transformer, and pre-trained models like BERT and RoBERTa, etc), besides, frameworks like Sentence Transformer have already lowered the bar of training models for semantic text representation using customized models and datasets. In this paper, we investigated several well trained models according to Massive Text Embedding Benchmark (MTEB) in Huggingface website. Enlighted by the extensive use of prompt engineering in large language models like Llama or GPT3, we proposed STEP: a novel method using prompt to improve performance of text embeddings on downstream tasks, making it applicable to almost any pre-trained language models for text embeddings. Besides, STEP does not need to modify base model structure. In the experiment, we applied STEP to five pre-trained models chosen from MTEB, trained and evaluated our approach on two separated datasets, final results indicated that our approach could improve performance of tasks related to semantic text similarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Light发布了新的文献求助10
1秒前
灵珠学医完成签到 ,获得积分10
2秒前
哒哒哒发布了新的文献求助30
2秒前
完美世界应助袁小破采纳,获得10
2秒前
若汁叭叭完成签到,获得积分10
2秒前
2秒前
momo发布了新的文献求助10
2秒前
英俊的铭应助平常的乘云采纳,获得10
3秒前
3秒前
G18960完成签到,获得积分10
3秒前
嘟嘟拉拉hh完成签到,获得积分20
4秒前
月牙儿完成签到,获得积分10
4秒前
5秒前
keyab完成签到,获得积分20
5秒前
5秒前
Tiwiiw完成签到 ,获得积分10
5秒前
5秒前
6秒前
852应助害羞外套采纳,获得10
7秒前
共享精神应助RenHP采纳,获得10
7秒前
打打应助Light采纳,获得10
7秒前
扶桑发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
WIL发布了新的文献求助10
9秒前
Catfish发布了新的文献求助10
9秒前
July完成签到,获得积分10
9秒前
10秒前
jasmine发布了新的文献求助10
10秒前
整齐道天发布了新的文献求助10
11秒前
11秒前
酷波er应助陈槊诸采纳,获得10
12秒前
LcnTCM发布了新的文献求助10
12秒前
爱喝可乐完成签到,获得积分10
12秒前
ailemonmint完成签到,获得积分10
13秒前
77发布了新的文献求助20
13秒前
iNk应助Assassion采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473591
求助须知:如何正确求助?哪些是违规求助? 4575682
关于积分的说明 14353923
捐赠科研通 4503208
什么是DOI,文献DOI怎么找? 2467556
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429362