清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-Time Cardiac Abnormality Monitoring and Nursing for Patient Using Electrocardiographic Signals

异常 医学 心脏病学 医疗急救 内科学 重症监护医学 精神科
作者
Huamin Ao,Enjian Zhai,Le Jiang,Kailin Yang,Yuxuan Deng,Xiaoyang Guo,Liuting Zeng,Yexing Yan,Moujia Hao,Tian Song,Jinwen Ge,Junpeng Chen
出处
期刊:Cardiology [S. Karger AG]
卷期号:: 1-11 被引量:2
标识
DOI:10.1159/000539767
摘要

<b><i>Introduction:</i></b> Cardiovascular disease nursing is a critical clinical application that necessitates real-time monitoring models. Previous models required the use of multi-lead signals and could not be customized as needed. Traditional methods relied on manually designed supervised algorithms, based on empirical experience, to identify waveform abnormalities and classify diseases, and were incapable of monitoring and alerting abnormalities in individual waveforms. <b><i>Methods:</i></b> This research reconstructed the vector model for arbitrary leads using the phase space-time-delay method, enabling the model to arbitrarily combine signals as needed while possessing adaptive denoising capabilities. After employing automatically constructed machine learning algorithms and designing for rapid convergence, the model can identify abnormalities in individual waveforms and classify diseases, as well as detect and alert on abnormal waveforms. <b><i>Result:</i></b> Effective noise elimination was achieved, obtaining a higher degree of loss function fitting. After utilizing the algorithm in Section 3.1 to remove noise, the signal-to-noise ratio increased by 8.6%. A clipping algorithm was employed to identify waveforms significantly affected by external factors. Subsequently, a network model established by a generative algorithm was utilized. The accuracy for healthy patients reached 99.2%, while the accuracy for APB was 100%, for LBBB 99.32%, for RBBB 99.1%, and for P-wave peak 98.1%. <b><i>Conclusion:</i></b> By utilizing a three-dimensional model, detailed variations in electrocardiogram signals associated with different diseases can be observed. The clipping algorithm is effective in identifying perturbed and damaged waveforms. Automated neural networks can classify diseases and patient identities to facilitate precision nursing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锦城纯契完成签到 ,获得积分10
7秒前
chcmy完成签到 ,获得积分0
11秒前
wujiwuhui完成签到 ,获得积分10
14秒前
盈盈发布了新的文献求助10
30秒前
xiaozou55完成签到 ,获得积分10
32秒前
坚定盈发布了新的文献求助10
34秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
cgs完成签到 ,获得积分10
1分钟前
乐乐应助Moona采纳,获得10
1分钟前
彭于晏应助银鱼在游采纳,获得10
1分钟前
hellokitty完成签到,获得积分10
1分钟前
一颗酒窝完成签到 ,获得积分10
1分钟前
zhangjw完成签到 ,获得积分0
1分钟前
1分钟前
韧迹完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
kean1943完成签到,获得积分10
2分钟前
王波完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Adc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Adc应助科研通管家采纳,获得10
2分钟前
盈盈发布了新的文献求助10
2分钟前
林克完成签到,获得积分10
2分钟前
呆萌冰彤完成签到 ,获得积分10
2分钟前
2分钟前
银鱼在游发布了新的文献求助10
3分钟前
zhuosht完成签到 ,获得积分10
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
sevenhill完成签到 ,获得积分0
3分钟前
Orange应助www采纳,获得10
3分钟前
Arctic完成签到 ,获得积分10
3分钟前
zzgpku完成签到,获得积分0
3分钟前
wave8013完成签到 ,获得积分10
3分钟前
3分钟前
两个轮完成签到 ,获得积分10
4分钟前
笨笨完成签到 ,获得积分10
4分钟前
英俊的铭应助ysss0831采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349