Structural Damage Detection Based on Structural Macro-Strain Mode Shapes Extracted From Non-Stationary Output Responses

拉伤 模式(计算机接口) 结构工程 控制理论(社会学) 计算机科学 材料科学 工程类 人工智能 医学 内科学 控制(管理) 操作系统 程序设计语言
作者
S.H. Chen,Zheng Xiong,Xiongjun Yang,Tao Zheng,Ben Yang,Ying Lei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096107-096107
标识
DOI:10.1088/1361-6501/ad4c85
摘要

Abstract Long-gauge fiber Bragg grating strain sensors have been widely employed because of their broader measuring range and higher sensitivity. However, current structural damage detection methods using macro-strain modal parameters are based on structural frequency response function or stationary power spectrum density, which are not applicable to non-stationary responses. To overcome this limitation, an improved method is proposed in this paper for structural damage detection based on structural macro-strain responses under unknown multi-point non-stationary excitations. First, a new concept of macro-strain energy spectrum transmissibility (MEST) is proposed using structural non-stationary macro-strain responses, and it is derived that MEST at a certain system pole equals the ratio of macro-strain mode shape. Then, the singular value decomposition technique is adopted for the MEST matrix to identify structural natural frequencies and macro-strain mode shapes. Finally, two damage detection indicators are constructed based on the identified normalized macro-strain mode shape (NMMS). The first indicator is the difference in structural NMMS before and after structural damage. The second one is based on the curvatures of structural NMMS, which can be used for structures without intact baseline. Numerical verifications are conducted to identify beam-type structural damage under multi-point non-stationary excitations or vehicle loads. Five damage scenarios with different measurement noise levels are investigated, and damage detection results validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大米粒完成签到 ,获得积分10
刚刚
赘婿应助cyc采纳,获得10
2秒前
Xing发布了新的文献求助10
2秒前
朴实仙人掌完成签到,获得积分10
2秒前
葵屿完成签到,获得积分10
2秒前
酷波er应助小七饱饱采纳,获得10
3秒前
包容冰夏发布了新的文献求助10
4秒前
7秒前
9秒前
11秒前
11秒前
LY发布了新的文献求助10
12秒前
研友_LjDyNZ完成签到,获得积分10
12秒前
Xing完成签到,获得积分10
13秒前
不安的采白完成签到,获得积分10
14秒前
cyc发布了新的文献求助10
14秒前
包容冰夏完成签到,获得积分10
15秒前
小凉发布了新的文献求助10
15秒前
16秒前
粥粥完成签到,获得积分10
17秒前
荷包蛋发布了新的文献求助10
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
夏侯幻梦发布了新的文献求助10
21秒前
nobeliumer发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
YY发布了新的文献求助10
25秒前
25秒前
鳄鱼不做饿梦完成签到,获得积分10
26秒前
KonanoDade完成签到,获得积分10
27秒前
29秒前
大米粒发布了新的文献求助20
29秒前
29秒前
直率的乐萱完成签到 ,获得积分10
29秒前
Desole发布了新的文献求助10
30秒前
非而者厚应助xlz采纳,获得10
32秒前
爵士黄瓜完成签到,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864651
求助须知:如何正确求助?哪些是违规求助? 3407124
关于积分的说明 10652620
捐赠科研通 3131082
什么是DOI,文献DOI怎么找? 1726801
邀请新用户注册赠送积分活动 832003
科研通“疑难数据库(出版商)”最低求助积分说明 780104