悬挂(拓扑)
灵敏度(控制系统)
液压缸
多目标优化
水力机械
液压马达
工程类
控制理论(社会学)
功率(物理)
汽车工程
流离失所(心理学)
振动
机械工程
计算机科学
数学
声学
控制(管理)
心理学
物理
量子力学
电子工程
同伦
机器学习
人工智能
纯数学
心理治疗师
作者
Sijing Guo,Liang Chen,Yu Pan,Xuxiang Wang,Gangfeng Tan
出处
期刊:Electronics
[Multidisciplinary Digital Publishing Institute]
日期:2023-02-09
卷期号:12 (4): 891-891
被引量:9
标识
DOI:10.3390/electronics12040891
摘要
Hydraulic integrated interconnected regenerative suspension (HIIRS) is a novel suspension system that can simultaneously harvest the vibration energy in the suspension and enhance the vehicle dynamics. The parameter sensitivity of the HIIRS system is analyzed and the significant parameters are optimized in this paper. Specifically, a half-vehicle model with the HIIRS is established. Based on the model, the parameter sensitivity of the hydraulic system is analyzed with three objectives, ride comfort, road holding, and average energy harvesting power. The parameters considered in this study are more abundant than those in previous related studies, including hydraulic cylinder inner diameter, hydraulic motor displacement, resistance, initial system pressure, and accumulator parameters. It turns out that the most sensitive parameters are the inner diameter of the hydraulic cylinder, the resistance, and the displacement of the hydraulic motor. To further study the performances that the HIIRS could present, both the single-objective optimization and the multi-objective optimization problems are solved and compared with the optimized traditional suspensions. The optimized HIIRS performs better in ride comfort and road holding than the optimized traditional suspension and anti-roll bar suspension. Different from the previous suspension optimization design, multi-objective optimization not only considers the traditional performance of the suspension but also incorporates the energy harvesting characteristics into the optimization objective. In the multi-objective optimization, a Pareto front is obtained, which shows that the ride comfort conflicts with the road holding and the energy harvesting power, while road holding and energy harvesting power did not conflict. The Pareto front shows that the optimized HIIRS is superior to the traditional suspension in ride comfort and road holding, and also harvests considerable energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI