材料科学
马氏体
微观结构
贝氏体
电子背散射衍射
扫描电子显微镜
韧性
光学显微镜
透射电子显微镜
复合材料
粒度
冶金
衍射
光学
纳米技术
物理
作者
Kaihao Guo,Tao Pan,Ning Zhang,Meng Li,Xiaobing Luo,Feng Chai
出处
期刊:Materials
[MDPI AG]
日期:2023-02-15
卷期号:16 (4): 1607-1607
被引量:12
摘要
In this study, microstructural evolution and its effects on mechanical properties across the thickness of a 120 mm Ni-Cr-Mo industrial ultra-heavy steel plate were quantitatively investigated by means of optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron back-scatter diffraction (EBSD). The results show that the martensite fraction is 65% at 10 mm and disappears at 40 mm, while granular bainite appears at 35 mm and climbs up to as high as 32% at 60 mm, with M-A constituents significantly coarsened. The strength drops with the gradual coarsening of the laths as well as decreased martensite fraction from the surface to the centre. The toughness is mainly affected by the block size and the morphology and quantity of M-A constituents. This study established a multivariate function between the microstructure and toughness (50% fibre area transition temperature, FATT50) with careful consideration of the influence of effective grain size (EGS) and M-A constituent size distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI