StabStitch++: Unsupervised Online Video Stitching with Spatiotemporal Bidirectional Warps

图像拼接 人工智能 计算机科学 计算机视觉 模式识别(心理学)
作者
Lang Nie,Chunyu Lin,Kang Liao,Yun Zhang,Shuaicheng Liu,Yao Zhao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tpami.2025.3568829
摘要

We retarget video stitching to an emerging issue, named warping shake, which unveils the temporal content shakes induced by sequentially unsmooth warps when extending image stitching to video stitching. Even if the input videos are stable, the stitched video can inevitably cause undesired warping shakes and affect the visual experience. To address this issue, we propose StabStitch++, a novel video stitching framework to realize spatial stitching and temporal stabilization with unsupervised learning simultaneously. First, different from existing learning-based image stitching solutions that typically warp one image to align with another, we suppose a virtual midplane between original image planes and project them onto it. Concretely, we design a differentiable bidirectional decomposition module to disentangle the homography transformation and incorporate it into our spatial warp, evenly spreading alignment burdens and projective distortions across two views. Then, inspired by camera paths in video stabilization, we derive the mathematical expression of stitching trajectories in video stitching by elaborately integrating spatial and temporal warps. Finally, a warp smoothing model is presented to produce stable stitched videos with a hybrid loss to simultaneously encourage content alignment, trajectory smoothness, and online collaboration. Compared with StabStitch that sacrifices alignment for stabilization, StabStitch++ makes no compromise and optimizes both of them simultaneously, especially in the online mode. To establish an evaluation benchmark and train the learning framework, we build a video stitching dataset with a rich diversity in camera motions and scenes. Experiments exhibit that StabStitch++ surpasses current solutions in stitching performance, robustness, and efficiency, offering compelling advancements in this field by building a real-time online video stitching system. The code and dataset are available at https://github.com/nie-lang/StabStitch2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
斯文败类应助怡然万声采纳,获得10
1秒前
初见完成签到,获得积分10
1秒前
野猪大王完成签到 ,获得积分10
1秒前
2秒前
搜集达人应助嘟啦采纳,获得10
2秒前
zxcvbnm发布了新的文献求助10
3秒前
甜甜灯泡发布了新的文献求助10
3秒前
3秒前
星辰大海应助木之夏采纳,获得10
3秒前
kk发布了新的文献求助10
5秒前
西又木完成签到,获得积分10
5秒前
5秒前
5秒前
宁幼萱发布了新的文献求助10
6秒前
abc1122完成签到,获得积分10
6秒前
xun完成签到,获得积分20
6秒前
7秒前
jiali完成签到,获得积分10
7秒前
上好佳发布了新的文献求助10
8秒前
充电宝应助WangJ1018采纳,获得10
8秒前
猫喵喵发布了新的文献求助10
8秒前
9秒前
9秒前
cuicy完成签到 ,获得积分10
9秒前
dalunshinidie123完成签到,获得积分10
11秒前
李123456完成签到,获得积分10
11秒前
11秒前
互助发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
whb完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
FOOL发布了新的文献求助10
13秒前
14秒前
橘生饼完成签到,获得积分10
14秒前
kk完成签到,获得积分10
14秒前
14秒前
浮游应助小马哥采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075278
求助须知:如何正确求助?哪些是违规求助? 4295158
关于积分的说明 13383568
捐赠科研通 4116817
什么是DOI,文献DOI怎么找? 2254505
邀请新用户注册赠送积分活动 1259126
关于科研通互助平台的介绍 1191907