How to accelerate the inorganic materials synthesis: from computational guidelines to data-driven method?

计算机科学 材料科学 计算科学 工艺工程 工程类
作者
Yilei Wu,Xiangyang Li,Rong Guo,Rui Xu,Ming-Gang Ju,Jinlan Wang
出处
期刊:National Science Review [Oxford University Press]
标识
DOI:10.1093/nsr/nwaf081
摘要

The development of novel functional materials has attracted widespread attention to meet the constantly growing demand for addressing the major global challenges facing humanity, among which experimental synthesis emerges as one of the crucial challenges. Understanding the synthesis processes and predicting the outcomes of synthesis experiments are essential for increasing the success rate of experiments. With the advancements in computational power and the emergence of machine learning (ML) techniques, computational guidelines and data-driven methods have significantly contributed to accelerating and optimizing material synthesis. Herein, a review of the latest progress on the computation-guided and ML-assisted inorganic material synthesis is presented. First, common synthesis methods for inorganic materials are introduced, followed by a discussion of physical models based on thermodynamics and kinetics, which are relevant to the synthesis feasibility of inorganic materials. Second, data acquisition, commonly utilized material descriptors, and ML techniques in ML-assisted inorganic material synthesis are discussed. Third, applications of ML techniques in inorganic material synthesis are presented, which are classified according to different material data sources. Finally, we highlight the crucial challenges and promising opportunities for ML-assisted inorganic materials synthesis. This review aims to provide critical scientific guidance for future advancements in ML-assisted inorganic materials synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助微笑奇迹采纳,获得10
1秒前
cyx30303发布了新的文献求助10
1秒前
帅小主发布了新的文献求助10
3秒前
ashleyjr完成签到,获得积分10
3秒前
Dawn完成签到,获得积分10
5秒前
8秒前
雪白书萱完成签到,获得积分10
12秒前
桐桐应助机灵的觅山采纳,获得10
13秒前
www完成签到 ,获得积分10
14秒前
yydragen应助ramsey33采纳,获得50
16秒前
科研通AI5应助满意的续采纳,获得30
17秒前
阡陌花开完成签到 ,获得积分10
18秒前
19秒前
bkagyin应助曦小蕊采纳,获得10
21秒前
22秒前
科研通AI5应助不甜的唐采纳,获得10
22秒前
小马甲应助cj采纳,获得10
23秒前
123456发布了新的文献求助10
24秒前
25秒前
26秒前
鉴定为学计算学的完成签到,获得积分10
26秒前
kk完成签到 ,获得积分10
27秒前
笔芯完成签到,获得积分10
28秒前
28秒前
28秒前
29秒前
香蕉觅云应助铜泰妍采纳,获得10
29秒前
30秒前
懵懂的冰海完成签到,获得积分10
31秒前
LiBo发布了新的文献求助10
33秒前
劣根完成签到,获得积分10
34秒前
bkagyin应助找文献采纳,获得10
35秒前
35秒前
小鹿发布了新的文献求助10
36秒前
37秒前
王欣发布了新的文献求助10
41秒前
sss完成签到 ,获得积分10
41秒前
不甜的唐发布了新的文献求助10
42秒前
Kathy发布了新的文献求助30
42秒前
LiBo发布了新的文献求助10
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846673
求助须知:如何正确求助?哪些是违规求助? 3389223
关于积分的说明 10556297
捐赠科研通 3109602
什么是DOI,文献DOI怎么找? 1713842
邀请新用户注册赠送积分活动 824934
科研通“疑难数据库(出版商)”最低求助积分说明 775135