Enhanced Dehydration by External Pressure Driving Forces Decreases Ion Trans-subnanochannel Selectivity

选择性 脱水 离子 化学 有机化学 催化作用 生物化学
作者
Zhibin Chen,Chenghai Lu,Chengzhi Hu,Jiuhui Qu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (24): 12340-12351 被引量:2
标识
DOI:10.1021/acs.est.5c01919
摘要

The external driving force as an operating condition significantly determines membrane separation performance, but it is not clear how the selectivity of ions and intrinsic transport mechanisms are affected accordingly. Herein, the selective ratio of three kinds of representative cations (alkali metal ions, bivalent cations, and polyatomic cations) and their underlying Eyring's enthalpy and entropy of activation for transporting through regular confined channels under pressure, concentration gradient, and electric field were quantified. Compared with the diffusion-only process, the increase in the enthalpic barriers under external pressure was attributed to the increase in the degree of ion dehydration and deformation of the ion's own structure, especially for polyatomic ions (NH4+ and TMA+) with lower hydration energies. Moreover, the splitting of the integrated ion fluxes under pressure by the DSPM-DE model further demonstrated the enhancement of ion dehydration by forced convection, which reduced the ion transport variability under steric sieving effects while increasing the ion fluxes. The ion selectivity was greatest for electromigration, but 60-fold higher voltage (about 20 V) was required for reaching equal ion fluxes as pressure-driven transport. The thermodynamic analysis indicated that compared with the ion migration alone under an electric field, osmotic pressure in concentration diffusion and cotransport of ions and water under pressure increased the transmembrane energy barriers. This study informs the choice of membrane separation modes in different application scenarios, which could help balance selectivity and energy consumption associated with driving forces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slp123456发布了新的文献求助10
1秒前
1872发布了新的文献求助10
2秒前
任润发布了新的文献求助30
2秒前
3秒前
mm完成签到 ,获得积分10
3秒前
脚踏实地发布了新的文献求助10
3秒前
WizBLue完成签到,获得积分10
4秒前
alu发布了新的文献求助10
5秒前
6秒前
6秒前
zf2023完成签到,获得积分10
6秒前
vocrious发布了新的文献求助20
6秒前
7秒前
荆轲刺秦王完成签到 ,获得积分10
8秒前
子勿语完成签到 ,获得积分10
8秒前
星之所向完成签到,获得积分10
8秒前
小马甲应助温水采纳,获得10
9秒前
10秒前
虚心的清完成签到,获得积分10
10秒前
田様应助执着乐双采纳,获得10
10秒前
于璐完成签到,获得积分10
11秒前
研友_rLmrgn发布了新的文献求助10
11秒前
HY2024发布了新的文献求助10
12秒前
Jasper应助高兴宝马采纳,获得30
13秒前
l蓝格格发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI6应助读书的时候采纳,获得10
14秒前
爱笑若冰完成签到 ,获得积分10
14秒前
求助人员发布了新的文献求助30
15秒前
风清扬发布了新的文献求助10
15秒前
15秒前
15秒前
JamesPei应助开放冰香采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
我是老大应助HH采纳,获得10
17秒前
17秒前
17秒前
Momomo应助Rui采纳,获得10
18秒前
log发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160