Raman Peak Features Matching: Enhancing Spectral Analysis through Feature Augmentation

化学 拉曼光谱 特征(语言学) 匹配(统计) 光谱分析 模式识别(心理学) 分析化学(期刊) 人工智能 色谱法 统计 光学 光谱学 哲学 物理 量子力学 语言学 计算机科学 数学
作者
Pengju Yin,Xiaojuan Lian,Xiaoyao Wu,Xiao Yuan,Chuanyan Feng,Yiliang Lv,Langlang Yi,Minghui Liang,Guanqun Ge,Klyuyev Dmitriy,Bo Hu
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c06679
摘要

Raman spectroscopy has emerged as a pivotal technology in modern scientific research and industrial applications, offering nondestructive, high-resolution analysis with robust molecular fingerprinting capabilities. The extraction of Raman spectral features is a critical step in spectral data analysis, directly influencing sample identification, classification, and quantitative outcomes. However, integrating important data features from machine learning models with context-specific biosignatures to derive meaningful insights into spectral analysis remains a significant challenge. Herein, the Raman Peak Feature Matching (RPFM) method is proposed, which matches protein peak features with salient breast cell data features extracted from the machine learning models. Feature augmentation is subsequently applied to the matching-retained breast cell features, thereby enhancing spectral analysis capabilities. The RPFM method is applied to breast cell spectra for feature augmentation with a reclassification accuracy of 97.12% using a linear support vector machine model, achieving an 8.34% improvement over the model's performance without feature augmentation. The RPFM method has also been successfully implemented in generalized linear logistic regression and tree-based eXtreme gradient boosting, demonstrating its versatility across diverse machine learning algorithms. The RPFM method leverages data-driven machine learning models while compensating for the inability to take into account specific specialized background knowledge. This methodology significantly advances the accuracy and efficacy of spectral analysis in biological and medical applications, offering a novel framework for machine learning algorithms to perform augmented Raman spectral analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋泥好暖椰y完成签到 ,获得积分10
刚刚
PT发布了新的文献求助20
刚刚
欧阳万仇发布了新的文献求助10
1秒前
2秒前
yinshaoyu21完成签到,获得积分10
2秒前
ChenXiaoL发布了新的文献求助30
2秒前
sule发布了新的文献求助10
2秒前
郭嘉仪完成签到 ,获得积分10
3秒前
3秒前
李健的小迷弟应助tracer采纳,获得10
4秒前
5秒前
南汐完成签到,获得积分10
5秒前
趣多多发布了新的文献求助10
5秒前
我是老大应助QRE采纳,获得20
6秒前
6秒前
6秒前
7秒前
NexusExplorer应助尛森采纳,获得10
7秒前
Daniel发布了新的文献求助10
8秒前
打打应助Breeze01采纳,获得10
8秒前
完美世界应助gao采纳,获得30
8秒前
谨慎时光关注了科研通微信公众号
8秒前
ll关注了科研通微信公众号
8秒前
CodeCraft应助yyymmma采纳,获得10
8秒前
尊敬雪萍发布了新的文献求助10
9秒前
科研狗敏敏完成签到,获得积分20
9秒前
烟花应助热心的小馒头采纳,获得10
9秒前
10秒前
VVVVVV发布了新的文献求助10
10秒前
羽生完成签到 ,获得积分10
11秒前
12秒前
某某某完成签到,获得积分10
12秒前
岩下松风完成签到,获得积分10
12秒前
12秒前
青柠发布了新的文献求助10
13秒前
莫封叶完成签到,获得积分10
13秒前
wjx发布了新的文献求助10
13秒前
13秒前
14秒前
欧阳万仇完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4283199
求助须知:如何正确求助?哪些是违规求助? 3811116
关于积分的说明 11938256
捐赠科研通 3457565
什么是DOI,文献DOI怎么找? 1896217
邀请新用户注册赠送积分活动 945066
科研通“疑难数据库(出版商)”最低求助积分说明 848801