亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Rapid Concrete Crack Detection Method Based on Improved YOLOv8

计算机科学
作者
Yongzhen Wang,Junguo He
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 59227-59243
标识
DOI:10.1109/access.2025.3555825
摘要

An improved YOLOv8 (You Only Look Once version 8) model is proposed to tackle the challenges of low detection accuracy and slow speed resulting from the complex background and shape diversity of concrete cracks. Firstly, a lightweight feature fusion module, GE_Conv, is designed by integrating the Ghost Module and Efficient Channel Attention in series. This module is embedded into the neck network to preserve more feature information during downsampling and accelerate the model’s inference speed. Secondly, the DBB_Bottleneck is introduced into the C2f module, combining the lightweight GE_Conv with the structurally re-parameterized Diverse Branch Block, enhancing the model’s multi-scale feature extraction capability. Furthermore, the introduction of the GF_Detect detection head significantly reduces the number of model parameters while improving detection performance. Finally, the WIoUv3 loss function is employed to dynamically assign anchor boxes of varying qualities, thereby enhancing the accuracy of anchor box positioning. Experimental results demonstrate that the proposed model achieves a detection precision of 92.9% and a mAP@50 (mean average precision at an Intersection over Union threshold of 0.5) of 77.8%. Compared to state-of-the-art algorithms such as Faster R-CNN, SSD, RetinaNet, YOLOv5s, YOLOv7-tiny, and the original YOLOv8s, the proposed model exhibits superior performance in both detection accuracy and generalization capability. Additionally, the model achieves an average detection time of 10.20 ms per image, demonstrating its practical feasibility. This study not only improves the accuracy and speed of crack detection but also significantly reduces the computational complexity of the model, advancing the development of lightweight and practical crack detection algorithms. The proposed model can be widely applied to crack inspection tasks for roads, bridges, coal mine shafts, and other scenarios, providing efficient and reliable technical support for crack maintenance and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HL773发布了新的文献求助10
刚刚
习惯过了头完成签到 ,获得积分10
1秒前
汉堡包应助木子采纳,获得10
3秒前
今天没带脑子完成签到 ,获得积分10
4秒前
xiuxiu完成签到 ,获得积分10
5秒前
玉欢完成签到,获得积分10
6秒前
上官若男应助彭进水采纳,获得10
7秒前
科研通AI2S应助cookie11111采纳,获得20
8秒前
2167418960完成签到,获得积分10
9秒前
自由的星星完成签到,获得积分10
10秒前
吴静完成签到 ,获得积分10
10秒前
可爱的函函应助活力天蓝采纳,获得50
12秒前
16秒前
16秒前
科目三应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
星驰完成签到,获得积分10
17秒前
18秒前
imp发布了新的文献求助10
20秒前
21秒前
淡淡的丑发布了新的文献求助10
21秒前
活力天蓝发布了新的文献求助50
24秒前
汤汤完成签到 ,获得积分10
27秒前
Kkk完成签到 ,获得积分10
29秒前
悄悄完成签到 ,获得积分10
30秒前
Akim应助不能随便采纳,获得10
31秒前
许译匀发布了新的文献求助10
31秒前
bkagyin应助imp采纳,获得10
33秒前
37秒前
39秒前
枝头树上的布谷鸟完成签到 ,获得积分10
41秒前
小马甲应助颜颜采纳,获得10
42秒前
皓轩发布了新的文献求助10
43秒前
英姑应助Barbet采纳,获得10
43秒前
大个应助蝴蝶采纳,获得10
44秒前
不能随便发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723308
求助须知:如何正确求助?哪些是违规求助? 5275799
关于积分的说明 15298415
捐赠科研通 4871881
什么是DOI,文献DOI怎么找? 2616297
邀请新用户注册赠送积分活动 1566104
关于科研通互助平台的介绍 1523016