Development and Validation of a Machine Learning-based Model for Prediction of Liver Fibrosis and MASH

医学 纤维化 脂肪性肝炎 接收机工作特性 脂肪肝 肝纤维化 内科学 肝活检 逻辑回归 胃肠病学 疾病 人工智能 机器学习 活检 计算机科学
作者
Maojie Liu,Longfeng Jiang,Juan Yang,Yao Yao,Xiaoling Puyang,X. Ge,Jing Lü,Lu Zhang,Yuqian Yan,Hongbing Shen,Ci Song
出处
期刊:Journal of Clinical Gastroenterology [Lippincott Williams & Wilkins]
标识
DOI:10.1097/mcg.0000000000002166
摘要

Background and Aim: The development of accurate noninvasive tests to identify individuals with metabolic dysfunction–associated steatohepatitis (MASH) and liver fibrosis is of great clinical importance. In this study, we aimed to develop 2 noninvasive diagnostic models on the basis of routine clinical and laboratory data, using machine learning, to identify patients with MASH and significant fibrosis (fibrosis stages 2 to 4), respectively. Methods: This analysis included the training (n=456) and the validation (n=105) sets of patients who underwent liver biopsy and laboratory testing for liver disease at 2 hospitals in China. Logistic regression, random forest, support vector machine, and the XGBoost algorithm were used to construct models, respectively. The best diagnostic models for MASH and significant fibrosis were compared with 7 existing noninvasive scoring systems including AAR, AST to platelet ratio index (APRI), BARD score, fibrosis-4 (FIB-4), fibrotic non-alcoholic steatohepatitis (NASH) index (FNI), homeostatic model assessment of insulin resistance (HOMA-IR), and non-alcoholic fatty liver disease fibrosis score (NFS). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). Results: The final noninvasive diagnostic model integrated 19 indicators derived from routine clinical and laboratory tests. The XGBoost models exhibited superior performance in MASH and significant fibrosis with an improved AUROC value (MASH, 0.670, 95% CI 0.530-0.811; significant fibrosis, 0.713, 95% CI 0.611-0.815) compared with other noninvasive scoring systems in the validation set. Conclusions: Utilizing machine learning can assist in diagnosing MASH and significant fibrosis based on clinical epidemiological information with good diagnostic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
大辉完成签到 ,获得积分10
3秒前
忧虑的火龙果完成签到,获得积分10
4秒前
牛乘风发布了新的文献求助10
4秒前
wanci应助小马的可爱老婆采纳,获得10
4秒前
情怀应助无辜秋珊采纳,获得10
5秒前
5秒前
堀川美嘉kk完成签到,获得积分10
6秒前
doul2023发布了新的文献求助10
6秒前
6秒前
RRhhh完成签到,获得积分10
7秒前
友好的代丝完成签到,获得积分20
7秒前
7秒前
丘比特应助盒子采纳,获得10
7秒前
7秒前
shallow发布了新的文献求助10
7秒前
8秒前
9秒前
顾矜应助han采纳,获得10
9秒前
xy发布了新的文献求助10
9秒前
震动的觅露完成签到,获得积分10
10秒前
10秒前
crucible发布了新的文献求助200
11秒前
可爱的函函应助小晶豆采纳,获得10
11秒前
11秒前
jdjakdjaslk发布了新的文献求助10
12秒前
qq发布了新的文献求助10
13秒前
ZL发布了新的文献求助10
13秒前
Zpeao发布了新的文献求助10
13秒前
牛乘风完成签到,获得积分10
14秒前
扶桑发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
善学以致用应助小青虫采纳,获得10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835479
求助须知:如何正确求助?哪些是违规求助? 3377803
关于积分的说明 10500774
捐赠科研通 3097386
什么是DOI,文献DOI怎么找? 1705784
邀请新用户注册赠送积分活动 820705
科研通“疑难数据库(出版商)”最低求助积分说明 772219