材料科学
电解质
陶瓷
钠
大气温度范围
聚合物电解质
聚合物
离子
航程(航空)
化学工程
复合材料
电极
冶金
离子电导率
热力学
有机化学
物理化学
化学
物理
工程类
作者
Shuanglin Wu,Feng Tang,Kun Zhang,Leibing Zhang,Fenglin Huang
标识
DOI:10.1002/adfm.202501107
摘要
Abstract The sluggish movement of polymer chains at low temperatures limits the performance of polymer‐based solid‐state batteries, especially for transporting large sodium ions. This study introduces a synergistic ion transport strategy integrating short‐ and long‐range pathways for enhanced sodium‐ion mobility. Electrospun ceramic nanofibers, modified with acylamino groups, form interfacial transport channels, while deep eutectic electrolytes (DEE) confined within these channels enable temperature‐independent, long‐range ion transport. Surrounding polymer electrolytes facilitate short‐range ion migration between the polymer and DEE. This composite electrolyte achieves high ionic conductivity (0.088 mS cm⁻¹ at −50 °C) and exceptional rate performance up to 20 C. The structure confines the DEE to ceramic fiber interfaces, preventing the formation of a gel‐like state due to DEE‐polymer mixing, and maintaining robust mechanical properties. The DEE interacts with polar groups on both the ceramic fibers and polymer matrix, reducing side reactions with the metal anode and improving cycle stability. The electrolyte retains 92.2% capacity retention at −30 °C after 100 cycles and 97.7% after 1000 cycles at 26 °C, with stable performance over 10 000 cycles at 5 C. This design offers an efficient and stable ion transport pathway for solid‐state sodium‐ion batteries, enabling superior performance even at ultra‐low temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI