A new framework for short-term wind power probability forecasting considering spatial and temporal dependence of forecast errors

概率逻辑 数值天气预报 概率预测 风力发电 风电预测 计算机科学 核密度估计 风速 预测区间 数据挖掘 期限(时间) 气象学 电力系统 统计 功率(物理) 数学 人工智能 机器学习 工程类 地理 量子力学 物理 估计员 电气工程
作者
Yang Sun,Baoju Li,Wenhui Hu,Zhenyuan Li,Chaoyu Shi
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:10 被引量:1
标识
DOI:10.3389/fenrg.2022.990989
摘要

Since deterministic prediction errors of wind power cannot be avoided, probabilistic prediction can adequately describe the uncertainty of wind power and, thus, provide further guidance to dispatching authorities for decision making. Current probabilistic prediction methods for wind power are still incomplete in mining its physical variation process. Therefore, this study constructs a new framework for short-term wind power probabilistic forecasting considering the spatio-temporal dependence of errors by mining the spatio-temporal characteristics of historical wind power data and numerical weather forecasts at numerical weather prediction (NWP). First, the deterministic prediction results are obtained by an improved deep belief network (DBN); then, a multi-location NWP is introduced to propose a multi-level error scenario partitioning method considering the spatio-temporal dependence property. Finally, a new error sample set is formed by reconstructing the kernel density estimation method to adapt the model, and the short-term wind power probability prediction at different confidence levels is carried out. It is, thus, concluded that the effectiveness of the overall framework under the probabilistic prediction considering spatio-temporal dependence is verified in a wind farm in Jilin, China, and the prediction accuracy is effectively and significantly improved compared with the same confidence level, and the coverage of the evaluation index prediction interval is improved by 1.23, 0.72, and 0.80%, and the average bandwidth of the prediction interval is reduced by 2.14, 1.40, and 0.63%, which confirms the proposed effectiveness and feasibility of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hao发布了新的文献求助10
刚刚
liberation完成签到 ,获得积分10
刚刚
longlong发布了新的文献求助30
刚刚
刚刚
73Jennie123完成签到,获得积分10
刚刚
长情篮球完成签到,获得积分10
刚刚
lpp_完成签到 ,获得积分10
1秒前
科研通AI5应助cincrady采纳,获得10
1秒前
和谐的小懒虫完成签到,获得积分10
1秒前
大漠孤烟发布了新的文献求助10
1秒前
吉吉应助科研通管家采纳,获得10
1秒前
可爱的函函应助Capital采纳,获得10
2秒前
吉吉应助科研通管家采纳,获得10
2秒前
吉吉应助科研通管家采纳,获得10
2秒前
子健完成签到,获得积分10
2秒前
深情安青应助科研通管家采纳,获得30
2秒前
许甜甜鸭应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
liushiyi完成签到,获得积分10
3秒前
Wangyingjie5发布了新的文献求助10
3秒前
听风轻语完成签到,获得积分10
3秒前
xie_ustb发布了新的文献求助30
3秒前
炙热念双完成签到 ,获得积分10
4秒前
小毛毛想睡觉完成签到 ,获得积分10
4秒前
4秒前
当归完成签到,获得积分10
4秒前
迷路芝麻完成签到,获得积分10
5秒前
mumu三完成签到,获得积分10
5秒前
5秒前
里里完成签到,获得积分10
5秒前
风信子完成签到,获得积分10
6秒前
温柔樱桃完成签到,获得积分10
6秒前
完美世界应助斯文的迎松采纳,获得10
6秒前
6秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837710
求助须知:如何正确求助?哪些是违规求助? 3379788
关于积分的说明 10511060
捐赠科研通 3099425
什么是DOI,文献DOI怎么找? 1707109
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772617