Neural Networks and English Learning: Design and Implementation of Personalized Learning Paths

人工神经网络 计算机科学 个性化学习 人工智能 工程类 心理学 数学教育 教学方法 合作学习 开放式学习
作者
Pengxiang Zhao,Yumeng Song
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
被引量:1
标识
DOI:10.1142/s0129156425401950
摘要

An instructional approach identified as a personalized learning path aims to adjust regulations to the particular interests’ necessities, talents, and skills of each pupil. Research on personalized path recommendation is critical for the development of sophisticated learning systems. The challenge emerges from the difficulty in developing personalized learning paths that properly fit every pupil’s unique characteristics and learning needs. This paper examines personalized educational routes and how deep learning (DL) algorithms can be used to construct them, with a particular emphasis on English language learning. This research proposed a novel fruit fly optimizer-tuned adjustable recurrent neural network (FFO-ARNN) to employ the students learning performance and effectively personalized English learning. For this study, gathering data on student’s demographics and English proficiency levels through assessments and educational records, in that Data on the linguistic competency of English linguistic Learners (ELLs) in grades 8–12 was collected. The data were pre-processed using tokenization for the obtained data. Term Frequency-Inverse Document Frequency (TF-IDF) is a method using extracts the feature from pre-processed data. These personalized learning approaches encourage self-directed learning and independence while increasing student engagement and academic achievement. The proposed method is implemented using Python software. In comparative analysis, the proposed method evaluates various performance metrics. The results show that the proposed method achieved superior performance in personalized learning paths in English learning. This study demonstrates how DL has the potential to revolutionize language instruction by providing customized solutions for every student.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助WY-zicaitang采纳,获得20
刚刚
wangxiaoyating完成签到,获得积分10
1秒前
行走的鱼发布了新的文献求助10
1秒前
像风一样自由完成签到 ,获得积分10
3秒前
Strongly完成签到,获得积分10
3秒前
3秒前
小舀发布了新的文献求助10
4秒前
LBJ发布了新的文献求助10
4秒前
顾北发布了新的文献求助10
4秒前
shss完成签到,获得积分20
4秒前
科研通AI6应助sun采纳,获得10
5秒前
orixero应助ee_Liu采纳,获得10
5秒前
5秒前
win完成签到,获得积分10
6秒前
西西完成签到 ,获得积分10
6秒前
独狼完成签到 ,获得积分10
7秒前
高贵小兔子发布了新的文献求助150
7秒前
7秒前
7秒前
共享精神应助兴奋硬币采纳,获得30
8秒前
淡白的努力完成签到,获得积分20
8秒前
在水一方应助JIAYIWANG采纳,获得10
8秒前
zz完成签到,获得积分10
8秒前
苗自中完成签到,获得积分10
8秒前
9秒前
9秒前
cc发布了新的文献求助10
9秒前
yikiann完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
火力全开完成签到,获得积分10
11秒前
12秒前
SciGPT应助飘逸曼彤采纳,获得10
13秒前
zz发布了新的文献求助20
13秒前
大朋完成签到,获得积分10
13秒前
NexusExplorer应助卡其嘛亮采纳,获得10
13秒前
苗自中发布了新的文献求助20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664