阴极
材料科学
聚合物
三苯胺
化学工程
聚合
容量损失
光电子学
纳米技术
电极
电解质
复合材料
工程类
化学
物理化学
作者
Haotian Wang,Gaopan Liu,Wen Zhou,Wang Yong-gang,Xiaoli Dong
标识
DOI:10.1002/anie.202416874
摘要
Organic carbonyl compounds have been recognized as promising electrodes due to multiple active sites, abundant element resources and flexible structural designability, while their practical applications are still hindered by the easy solubility and low discharge potential. Herein, a novel bipolar polymer composite (TAC) was well-designed by grafting p-type triphenylamine units onto n-type anthraquinone to form an extended π-conjugated structure and in situ growing on carbon nanotubes, which was proved not only with higher discharge potential but also effectively suppress the dissolution issues. Moreover, TAC combined the advantages of different active sites and behaved a dual-ion storage mechanism. Benefitting from the in situ polymerization process, TAC with tube-type core-shell structure exhibited enhanced electron transport and improved utilization of active sites, resulting in high capacity (193 mAh g
科研通智能强力驱动
Strongly Powered by AbleSci AI