Evolution mechanism for a surface gradient nanostructure in GH4169 superalloy induced by an ultrasonic surface rolling process

材料科学 等轴晶 高温合金 严重塑性变形 位错 纳米结构 冶金 变形机理 粒度 压痕硬度 变形(气象学) 晶界 晶界强化 复合材料 微观结构 纳米技术
作者
Jing Yang,Daoxin Liu,Mengyao Li,Zhencheng Ren,Dan Liŭ,Xingchen Xu,Xiaohua Zhang,Hao Zhang,Junfeng Xiang,Chang Ye
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:879: 145271-145271 被引量:5
标识
DOI:10.1016/j.msea.2023.145271
摘要

In this study, the evolution mechanism of surface gradient nanostructure induced by the ultrasonic surface rolling process (USRP) in GH4169 superalloy was investigated. The gradient nanostructure, which was characterized using transmission electron microscopy, revealed that the repeated impacts induced by USRP produced a gradient nanostructure with a thickness of ∼330 μm at the surface of the material. Equiaxed nanograins with an average grain size of ∼30 nm were observed on the topmost surface, and the grain size gradually increased with depth. In the nanocrystallization mechanism, dislocations first formed as a result of the initial plastic strain introduced by USRP. Next, dislocation tangles and dislocation walls were formed and gave rise to the formation of low-angle and high-angle grain boundaries, which resulted in grain refinement. As plastic strain accumulated, nanoscale deformation twins were formed. The interaction between dislocations and deformation twins further refined the parent grains to produce equiaxed nanograins with high-angle grain boundaries. In addition, stacking faults were generated when the interaction between dislocations and deformation twins was initiated. A 9R structure was observed inside the nanograins at the topmost surface that significantly improved the work-hardening capacity of the superalloy by acting both as dislocation blockers and dislocation storage sites. The microhardness of the nanostructured GH4169 superalloy was improved by 67% as compared to the untreated material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然雨雪完成签到,获得积分10
刚刚
Peix发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
Orange应助小珂采纳,获得10
3秒前
超超超发布了新的文献求助10
3秒前
6秒前
cherry发布了新的文献求助10
7秒前
Peix完成签到,获得积分10
7秒前
LU发布了新的文献求助30
8秒前
淡淡太兰发布了新的文献求助10
10秒前
年轻问夏发布了新的文献求助10
11秒前
13秒前
搜集达人应助哈哈哈采纳,获得10
13秒前
CodeCraft应助大太阳采纳,获得10
14秒前
脑洞疼应助超超超采纳,获得10
15秒前
husi发布了新的文献求助10
15秒前
15秒前
岑广山发布了新的文献求助50
17秒前
dra关闭了dra文献求助
18秒前
胡关完成签到,获得积分10
19秒前
法知一应助LU采纳,获得10
19秒前
20秒前
yxy发布了新的文献求助10
20秒前
23秒前
Lucas应助杨老师采纳,获得10
25秒前
25秒前
25秒前
Lucas应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
李爱国应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
秋雪瑶应助科研通管家采纳,获得100
26秒前
田様应助科研通管家采纳,获得10
26秒前
小尹同学应助科研通管家采纳,获得30
26秒前
小蘑菇应助科研通管家采纳,获得50
26秒前
Jasper应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2475850
求助须知:如何正确求助?哪些是违规求助? 2140406
关于积分的说明 5454645
捐赠科研通 1863713
什么是DOI,文献DOI怎么找? 926514
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495724