Evolution mechanism for a surface gradient nanostructure in GH4169 superalloy induced by an ultrasonic surface rolling process

材料科学 等轴晶 高温合金 严重塑性变形 位错 纳米结构 冶金 变形机理 粒度 压痕硬度 变形(气象学) 晶界 晶界强化 复合材料 微观结构 纳米技术
作者
Jing Yang,Daoxin Liu,Mengyao Li,Zhencheng Ren,Dan Liŭ,Xingchen Xu,Xiaohua Zhang,Hao Zhang,Junfeng Xiang,Chang Ye,Junfeng Xiang,Chang Ye
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:879: 145271-145271 被引量:40
标识
DOI:10.1016/j.msea.2023.145271
摘要

In this study, the evolution mechanism of surface gradient nanostructure induced by the ultrasonic surface rolling process (USRP) in GH4169 superalloy was investigated. The gradient nanostructure, which was characterized using transmission electron microscopy, revealed that the repeated impacts induced by USRP produced a gradient nanostructure with a thickness of ∼330 μm at the surface of the material. Equiaxed nanograins with an average grain size of ∼30 nm were observed on the topmost surface, and the grain size gradually increased with depth. In the nanocrystallization mechanism, dislocations first formed as a result of the initial plastic strain introduced by USRP. Next, dislocation tangles and dislocation walls were formed and gave rise to the formation of low-angle and high-angle grain boundaries, which resulted in grain refinement. As plastic strain accumulated, nanoscale deformation twins were formed. The interaction between dislocations and deformation twins further refined the parent grains to produce equiaxed nanograins with high-angle grain boundaries. In addition, stacking faults were generated when the interaction between dislocations and deformation twins was initiated. A 9R structure was observed inside the nanograins at the topmost surface that significantly improved the work-hardening capacity of the superalloy by acting both as dislocation blockers and dislocation storage sites. The microhardness of the nanostructured GH4169 superalloy was improved by 67% as compared to the untreated material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JackCoding发布了新的文献求助30
2秒前
xhsubdjj发布了新的文献求助10
2秒前
翟佳宁发布了新的文献求助10
2秒前
3秒前
ding应助ZXC采纳,获得10
4秒前
半生半熟完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
w1kend发布了新的文献求助10
4秒前
oO完成签到 ,获得积分10
5秒前
辞羽完成签到,获得积分10
5秒前
5秒前
博博要毕业完成签到 ,获得积分10
5秒前
Yy发布了新的文献求助10
6秒前
思源应助loongsg采纳,获得80
6秒前
小左完成签到,获得积分10
7秒前
西班牙拿铁完成签到 ,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
Zshen完成签到 ,获得积分10
7秒前
8秒前
失眠的剑完成签到,获得积分10
8秒前
摸俞发布了新的文献求助10
8秒前
9秒前
ysxl发布了新的文献求助10
10秒前
dawei完成签到 ,获得积分10
10秒前
10秒前
11秒前
小明应助wcz采纳,获得10
11秒前
11秒前
杨文成发布了新的文献求助20
12秒前
科研通AI6应助12采纳,获得10
12秒前
12秒前
13秒前
Joaquin发布了新的文献求助20
13秒前
w1kend发布了新的文献求助10
14秒前
15秒前
丘比特应助柠栀采纳,获得10
15秒前
赘婿应助莫123采纳,获得10
15秒前
xxx发布了新的文献求助10
16秒前
英俊的铭应助翟佳宁采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077