UAV-based panoramic scene recognition utilizing discrete spherical image features

计算机视觉 人工智能 计算机科学 图像(数学) 计算机图形学(图像)
作者
Meng Liu,Yongsheng Ding,Yiyuan Xie
标识
DOI:10.1117/12.2681205
摘要

Vision scheme based on the unmanned aerial vehicle (UAV) has gained widespread attention in recent years. Nevertheless, on account of the limited field-of-view of traditional images, it is difficult to apply to the fields that require comprehensive visual information. Therefore, a novel visual scheme based on the UAV platform with panoramic images is proposed in this paper, in which a platform consists of the panoramic cameras and the unmanned aerial vehicle are innovatively established and a scene recognition method based on discrete spherical image features are implemented. For the sake of reducing the distortion of panoramic image, we propose an icosahedron-based panoramic image representation for feature extraction, and then combined with the convolutional neural network and support vector machine, recognition task of the real image captured by the UAV platform are accomplished. Compared with the most widely used representation, namely the equirectangular projection, the proposed method can improve the recognition accuracy by 13.64% based on the Panoramic Scene dataset. Besides, our method can obtain a better performance even under the condition of large noise. Therefore, the proposed UAV-based panoramic scene recognition method can be applied to the fields that require comprehensive visual information effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智友蕊完成签到 ,获得积分10
1秒前
小于发布了新的文献求助10
2秒前
十三完成签到,获得积分10
2秒前
科研小lese完成签到,获得积分10
2秒前
4秒前
5秒前
6秒前
JamesPei应助阳光下的背影采纳,获得10
7秒前
小么完成签到 ,获得积分10
7秒前
ling发布了新的文献求助20
8秒前
9秒前
9秒前
李健的小迷弟应助wq采纳,获得10
9秒前
10秒前
arui发布了新的文献求助20
11秒前
Bin_Liu发布了新的文献求助10
12秒前
13秒前
wing完成签到 ,获得积分10
15秒前
桃花岛主完成签到,获得积分10
16秒前
阳光下的背影完成签到,获得积分10
17秒前
青岚发布了新的文献求助10
17秒前
22秒前
22秒前
22秒前
24秒前
ycy小菜鸡应助橙子采纳,获得10
25秒前
25秒前
c123完成签到 ,获得积分10
25秒前
26秒前
kkkkkk完成签到,获得积分20
28秒前
fmm发布了新的文献求助10
29秒前
魔法签证1993完成签到,获得积分10
29秒前
傲娇半山发布了新的文献求助10
29秒前
NIE完成签到,获得积分20
29秒前
冰魂应助小手凉凉采纳,获得10
30秒前
xiaoqian发布了新的文献求助10
30秒前
空空完成签到,获得积分10
31秒前
31秒前
刘丰发布了新的文献求助10
32秒前
33秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824330
求助须知:如何正确求助?哪些是违规求助? 3366644
关于积分的说明 10441843
捐赠科研通 3085924
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816411
科研通“疑难数据库(出版商)”最低求助积分说明 769640