Multimodal Data Integration Advances Longitudinal Prediction of the Naturalistic Course of Depression and Reveals a Multimodal Signature of Remission During 2-Year Follow-up

接收机工作特性 重性抑郁障碍 萧条(经济学) 组学 特征选择 内科学 疾病 机器学习 人工智能 医学 心理学 生物信息学 生物 计算机科学 扁桃形结构 经济 宏观经济学
作者
Philippe C Habets,Rajat Mani Thomas,Yuri Milaneschi,Ritsert C. Jansen,René Pool,Wouter J. Peyrot,Brenda W. J. H. Penninx,Onno C. Meijer,Guido van Wingen,Christiaan H. Vinkers
出处
期刊:Biological Psychiatry [Elsevier BV]
卷期号:94 (12): 948-958 被引量:3
标识
DOI:10.1016/j.biopsych.2023.05.024
摘要

The ability to predict the disease course of individuals with major depressive disorder (MDD) is essential for optimal treatment planning. Here, we used a data-driven machine learning approach to assess the predictive value of different sets of biological data (whole-blood proteomics, lipid metabolomics, transcriptomics, genetics), both separately and added to clinical baseline variables, for the longitudinal prediction of 2-year remission status in MDD at the individual-subject level.Prediction models were trained and cross-validated in a sample of 643 patients with current MDD (2-year remission n = 325) and subsequently tested for performance in 161 individuals with MDD (2-year remission n = 82).Proteomics data showed the best unimodal data predictions (area under the receiver operating characteristic curve = 0.68). Adding proteomic to clinical data at baseline significantly improved 2-year MDD remission predictions (area under the receiver operating characteristic curve = 0.63 vs. 0.78, p = .013), while the addition of other omics data to clinical data did not yield significantly improved model performance. Feature importance and enrichment analysis revealed that proteomic analytes were involved in inflammatory response and lipid metabolism, with fibrinogen levels showing the highest variable importance, followed by symptom severity. Machine learning models outperformed psychiatrists' ability to predict 2-year remission status (balanced accuracy = 71% vs. 55%).This study showed the added predictive value of combining proteomic data, but not other omics data, with clinical data for the prediction of 2-year remission status in MDD. Our results reveal a novel multimodal signature of 2-year MDD remission status that shows clinical potential for individual MDD disease course predictions from baseline measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的访冬完成签到 ,获得积分10
3秒前
诸葛御风应助务实从阳采纳,获得30
3秒前
小天使的使完成签到,获得积分10
5秒前
甲基醚完成签到 ,获得积分10
8秒前
机密塔完成签到,获得积分10
9秒前
进退须臾完成签到,获得积分10
9秒前
哥哥喜欢格格完成签到 ,获得积分10
10秒前
文静的行恶完成签到,获得积分10
10秒前
康康完成签到 ,获得积分10
15秒前
Waaly完成签到,获得积分10
16秒前
17秒前
科研通AI5应助lizhiqian2024采纳,获得10
17秒前
阿伦完成签到,获得积分10
19秒前
aa完成签到,获得积分10
19秒前
舒心完成签到,获得积分10
21秒前
隐形曼青应助小川采纳,获得10
21秒前
nancyshine完成签到,获得积分10
21秒前
无限的水壶完成签到 ,获得积分10
22秒前
22秒前
科研通AI5应助图南采纳,获得30
23秒前
曲蔚然完成签到 ,获得积分10
23秒前
KK关闭了KK文献求助
27秒前
28秒前
Harlotte完成签到 ,获得积分10
31秒前
HAHA完成签到,获得积分10
33秒前
勤恳冰淇淋完成签到 ,获得积分10
34秒前
AlanLi完成签到,获得积分20
36秒前
开放访天完成签到 ,获得积分10
37秒前
齐朕完成签到,获得积分10
40秒前
任性的静枫完成签到,获得积分20
40秒前
上官若男应助科研通管家采纳,获得10
42秒前
领导范儿应助科研通管家采纳,获得50
42秒前
我是老大应助科研通管家采纳,获得10
42秒前
丘比特应助科研通管家采纳,获得10
42秒前
42秒前
43秒前
43秒前
xxxidgkris应助科研通管家采纳,获得20
43秒前
852应助科研通管家采纳,获得10
43秒前
我是老大应助科研通管家采纳,获得10
43秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726