Time-series reconstruction and mapping of forest aboveground biomass in the Great Xing’an Mountains of China using GEDI, MODIS, and machine learning

作者
Chao Yang,Aobo Liu,Yating Chen,Chengxin Wang,Xiao Cheng
出处
期刊:Ecological Indicators [Elsevier]
卷期号:180: 114375-114375
标识
DOI:10.1016/j.ecolind.2025.114375
摘要

Accurate long-term estimation of forest aboveground biomass (AGB) is essential for understanding carbon dynamics and assessing the impacts of climate change and human disturbance. However, generating high-resolution, continuous AGB time series remains challenging due to data limitations and methodological constraints. In this study, we present a 21-year (2000–2020) reconstruction of forest AGB in China’s Great Xing’an Mountains by integrating multi-temporal MODIS imagery with spaceborne LiDAR data from the GEDI L4B product using the AutoGluon stacking ensemble learning algorithm. All models achieved root mean square errors (RMSE) below 25 Mg/ha, with weighted ensemble model yielding superior performance (R2 = 0.83, RMSE = 13.99 Mg/ha, rRMSE = 14.38 %). Trend analysis based on Sen’s slope and the Mann-Kendall test revealed a significant regional increase in AGB, with 83.36 % of forest area exhibiting upward trends, while 16.64 % showed declines. Fire disturbance emerged as a primary driver of localized AGB loss, particularly in the northern and eastern subregions. From 2000 to 2020, average forest AGB increased by 14.67 Mg/ha, and total biomass rose by 0.53 Pg. These results demonstrate the potential of combining GEDI and MODIS data with machine learning for large-scale, long-term forest biomass monitoring, offering valuable support for carbon accounting, ecological assessment, and forest management in cold-temperate ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
川农辅导员完成签到,获得积分10
2秒前
2秒前
3秒前
Polaris完成签到,获得积分20
3秒前
星辰大海应助ling采纳,获得10
3秒前
学术老6完成签到,获得积分0
3秒前
梦槐完成签到,获得积分10
3秒前
科研通AI6应助ray采纳,获得10
3秒前
4秒前
清梦完成签到 ,获得积分10
5秒前
Criminology34应助hulahula采纳,获得10
5秒前
开心蛋挞发布了新的文献求助10
5秒前
5秒前
科研通AI6应助3216采纳,获得10
5秒前
舍我其谁发布了新的文献求助10
5秒前
6秒前
打打应助哩哩采纳,获得10
6秒前
bkagyin应助平常的迎夏采纳,获得50
6秒前
qkyzzs完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
科研通AI6应助威武从筠采纳,获得10
9秒前
ha关闭了ha文献求助
10秒前
化学喵完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助100
11秒前
Ma完成签到,获得积分10
11秒前
小杭76应助乱世才子采纳,获得10
12秒前
12秒前
CyrusSo524应助豆包_P12345采纳,获得10
12秒前
简单成仁发布了新的文献求助10
12秒前
默默的甜瓜完成签到,获得积分10
13秒前
13秒前
烟花应助开心蛋挞采纳,获得10
13秒前
科研通AI6应助HHHorizon采纳,获得10
13秒前
深情安青应助gaga采纳,获得10
13秒前
Lucas应助共产主义战士采纳,获得10
13秒前
rkay完成签到,获得积分10
13秒前
英俊的铭应助EE采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750