Internal defects detection and classification in hollow cylindrical surfaces using single shot detection and MobileNet

人工智能 污垢 单发 卷积神经网络 最小边界框 计算机科学 弹丸 计算机视觉 跳跃式监视 特征提取 模式识别(心理学) 特征(语言学) 图像(数学) 工程类 材料科学 机械工程 光学 物理 哲学 冶金 语言学
作者
Imran Shafi,Awais Mazahir,Anum Fatima,Imran Ashraf
出处
期刊:Measurement [Elsevier]
卷期号:202: 111836-111836 被引量:20
标识
DOI:10.1016/j.measurement.2022.111836
摘要

Surface defect inspection, detection, and classification in hollow cylindrical surfaces such as pipes and barrels have a significant impact on the structural integrity of various industrial products. Regular inspection and identification of the faults reduces the likelihood of faults' aggravation, limits the damaging effects, and increases the product life. However, most of the defect detection algorithms for cylindrical surfaces rely heavily on handcrafted feature extraction limiting the ability to recognize the defects effectively. This research work proposes an image processing-based automatic defect detection and classification approach for cylindrical hollow surfaces. The proposed system uses a single shot multi-box detection (SSD) algorithm for localization and a customized lightweight deep convolutional neural network as a backbone network to classify defects generally found in industrial pipes and gun barrels. First, the image dataset is acquired from a real-time working environment using an indigenously developed borescope featuring a rotating camera and special hardware features. Later, the bounding boxes are calculated using extracted features to localize defects with SSD which takes a single shot to detect multiple objects within the image. Finally, the defected regions are classified into five classes of commonly found issues of pitting, chipping, rusting, dirt, and thermal cracking by utilizing deep learning architecture of 53 layers. It is found that the proposed approach can indicate the exact location of the classified defect in terms of angle and distance from a reference point. Also, the proposed method improves the detection and classification accuracy significantly compared to other existing methods. To encourage the development and evaluation of new methods for cylindrical surface defect detection, the dataset is also made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yearn完成签到,获得积分10
1秒前
共享精神应助诚心的访蕊采纳,获得10
1秒前
1秒前
贪玩手链发布了新的文献求助10
2秒前
2秒前
shuiyi发布了新的文献求助10
2秒前
小蘑菇应助耙芋儿采纳,获得10
2秒前
kyriewang完成签到 ,获得积分10
3秒前
慕青应助青衣北风采纳,获得200
3秒前
Caleb发布了新的文献求助10
3秒前
学术学习发布了新的文献求助10
3秒前
乐乐应助星辰采纳,获得10
3秒前
3秒前
4秒前
4秒前
酷波er应助zzz采纳,获得10
4秒前
5秒前
5秒前
5秒前
余弦发布了新的文献求助10
5秒前
5秒前
5秒前
阿帕奇完成签到,获得积分10
6秒前
KAZEN完成签到,获得积分10
6秒前
SciGPT应助健康的妙菱采纳,获得10
6秒前
6秒前
Lucas应助越过山丘采纳,获得10
6秒前
fehling发布了新的文献求助10
6秒前
Jasper应助HOPE采纳,获得10
7秒前
7秒前
dn完成签到,获得积分20
7秒前
黄裕鑫发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助hxr采纳,获得10
8秒前
刘丹妮发布了新的文献求助20
8秒前
美丽雪冥完成签到,获得积分10
9秒前
危机的如容完成签到,获得积分10
9秒前
张耘硕发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404576
求助须知:如何正确求助?哪些是违规求助? 4522954
关于积分的说明 14091850
捐赠科研通 4436730
什么是DOI,文献DOI怎么找? 2435212
邀请新用户注册赠送积分活动 1427559
关于科研通互助平台的介绍 1405929