Agricultural Commodity Sales Recommendation System For Farmers Based on Geographic Information Systems and Price Forecasting Using Probabilistic Neural Network Algorithm

商品 农业 商品市场 业务 市场价格 农业经济学 商业 经济 财务 地理 考古
作者
Adi Heru Utomo,M A Gumilang,Arisona Ahmad
出处
期刊:IOP conference series [IOP Publishing]
卷期号:980 (1): 012061-012061 被引量:4
标识
DOI:10.1088/1755-1315/980/1/012061
摘要

Abstract Since the implementation of social distancing and physical distancing due to the outbreak/pandemic of the Coronavirus (Covid-19), direct sales in the market have experienced a shortage of buyers. Farmers also share this in Indonesia, where the price game offered by collectors does not match the market price. The second problem is the mismatch of prices in each market, forcing farmers to check locations to sell their agricultural products. This problem is also experienced by the O’reng Rembangan Community Information Group (KIM), one of the community groups engaged in production to cultivate vegetable and fruit gardens in Kemuning Lor Village, Arjasa District, Jember Regency. The purpose of this research is the creation of an information system that can help farmers, especially KIM O’reng Rembangan, to obtain current market price information, receive market recommendations for agricultural products, get the nearest market from the location of farmers, and can be used by sellers to make purchases, optimize stock merchandise. This research also focuses on the prediction of agricultural commodity prices. The method used is the Probabilistic Neural Network (PNN) method to estimate the price of agricultural commodities. The resulting system in this study consists of 2 parts. The first part is the input device, which officers can use to enter the price of each agricultural commodity directly from each market. The second part is a Geographic information system used to display the forecasting results of agricultural commodity prices in each market. The forecast of agricultural commodity prices in this study has an accuracy of 98.3%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞跃发布了新的文献求助10
刚刚
刚刚
无问东西完成签到,获得积分20
刚刚
昏睡的半莲完成签到,获得积分10
刚刚
情怀应助CJY采纳,获得10
刚刚
lys发布了新的文献求助30
1秒前
猪猪hero发布了新的文献求助10
1秒前
科研小白完成签到,获得积分10
1秒前
2秒前
2秒前
Fairy发布了新的文献求助10
2秒前
科目三应助机智平松采纳,获得10
3秒前
痕迹发布了新的文献求助10
3秒前
3秒前
单纯的手机完成签到,获得积分10
3秒前
基拉完成签到,获得积分10
3秒前
浮游应助王星星采纳,获得10
4秒前
耍酷乌完成签到,获得积分10
5秒前
5秒前
楼沁发布了新的文献求助10
5秒前
5秒前
寒假工完成签到 ,获得积分10
5秒前
Owen应助jideli采纳,获得10
5秒前
yangdoudou完成签到,获得积分10
5秒前
6秒前
6秒前
WSGQT发布了新的文献求助20
6秒前
7秒前
7秒前
李新宇完成签到,获得积分10
7秒前
华仔应助Heloise采纳,获得10
7秒前
所所应助ff采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
项听蓉发布了新的文献求助10
8秒前
香蕉觅云应助婷婷采纳,获得10
9秒前
Cxxxx完成签到 ,获得积分10
9秒前
LaLune发布了新的文献求助10
10秒前
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446669
求助须知:如何正确求助?哪些是违规求助? 4555704
关于积分的说明 14253026
捐赠科研通 4478151
什么是DOI,文献DOI怎么找? 2453498
邀请新用户注册赠送积分活动 1444335
关于科研通互助平台的介绍 1420370