OMT and tensor SVD-based deep learning model for segmentation and predicting genetic markers of glioma: A multicenter study.

胶质瘤 人工智能 分割 计算机科学 张量(固有定义) 模式识别(心理学) 医学 计算生物学 生物 癌症研究 数学 纯数学
作者
Zhengyang Zhu,Han Wang,Tiexiang Li,Tsung-Ming Huang,Huiquan Yang,Zhennan Tao,Zhong-Heng Tan,Jianan Zhou,Sixuan Chen,Meiping Ye,Zhiqiang Zhang,Feng Li,Dongming Liu,Maoxue Wang,Jiaming Lu,Wen Zhang,Wenlin Zhou,Qian Chen,Zhuoru Jiang,Futao Chen
出处
期刊:PubMed 卷期号:122 (28): e2500004122-e2500004122
标识
DOI:10.1073/pnas.2500004122
摘要

Glioma is the most common primary malignant brain tumor and preoperative genetic profiling is essential for the management of glioma patients. Our study focused on tumor regions segmentation and predicting the World Health Organization (WHO) grade, isocitrate dehydrogenase (IDH) mutation, and 1p/19q codeletion status using deep learning models on preoperative MRI. To achieve accurate tumor segmentation, we developed an optimal mass transport (OMT) approach to transform irregular MRI brain images into tensors. In addition, we proposed an algebraic preclassification (APC) model utilizing multimode OMT tensor singular value decomposition (SVD) to estimate preclassification probabilities. The fully automated deep learning model named OMT-APC was used for multitask classification. Our study incorporated preoperative brain MRI data from 3,565 glioma patients across 16 datasets spanning Asia, Europe, and America. Among these, 2,551 patients from 5 datasets were used for training and internal validation. In comparison, 1,014 patients from 11 datasets, including 242 patients from The Cancer Genome Atlas (TCGA), were used as independent external test. The OMT segmentation model achieved mean lesion-wise Dice scores of 0.880. The OMT-APC model was evaluated on the TCGA dataset, achieving accuracies of 0.855, 0.917, and 0.809, with AUC scores of 0.845, 0.908, and 0.769 for WHO grade, IDH mutation, and 1p/19q codeletion, respectively, which outperformed the four radiologists in all tasks. These results highlighted the effectiveness of our OMT and tensor SVD-based methods in brain tumor genetic profiling, suggesting promising applications for algebraic and geometric methods in medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
暮望完成签到,获得积分10
2秒前
Jasper应助眯眯眼的枕头采纳,获得10
2秒前
知秋发布了新的文献求助10
2秒前
Developing_human完成签到,获得积分10
3秒前
WYF完成签到,获得积分10
4秒前
明月照我程完成签到,获得积分10
4秒前
lyl关注了科研通微信公众号
4秒前
zj发布了新的文献求助10
5秒前
烂漫绮兰发布了新的文献求助10
5秒前
5秒前
顾矜应助冷暴力采纳,获得10
6秒前
鳄鱼蛋发布了新的文献求助10
8秒前
威武丹寒关注了科研通微信公众号
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
9秒前
Dia应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
圆锥香蕉应助科研通管家采纳,获得40
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得30
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Dia应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得30
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
兮豫完成签到 ,获得积分10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4720798
求助须知:如何正确求助?哪些是违规求助? 4080953
关于积分的说明 12620250
捐赠科研通 3785915
什么是DOI,文献DOI怎么找? 2091086
邀请新用户注册赠送积分活动 1117152
科研通“疑难数据库(出版商)”最低求助积分说明 994006