材料科学
量子点
光电子学
费斯特共振能量转移
白光
能量转移
发光二极管
二极管
共振(粒子物理)
能量(信号处理)
有机发光二极管
光学
纳米技术
工程物理
荧光
原子物理学
物理
量子力学
图层(电子)
作者
Congcong Wang,Hongyu Yang,Yijing Wang,Zhanpeng Wang,Hao Wen,Xizhe Liang,Kun Qian,Xi Chen,Jingzhou Li,Hongxing Dong,Long Zhang
标识
DOI:10.1002/adfm.202518791
摘要
Abstract High data rates and high luminous efficiency are critical requirements for white light‐emitting diodes (WLEDs) to serve dual roles of data transmission and illumination in visible light communication (VLC) systems. The achievable data rate is fundamentally limited by the modulation bandwidth and the signal‐to‐noise ratio. However, current luminescent materials for photoluminescence‐based WLEDs cannot achieve the short fluorescence lifetimes required for high‐speed communication without sacrificing luminous efficiency. In this work, this limitation is overcome by designing a color conversion layer based on a Förster resonance energy transfer (FRET) system, comprising the CsPbBr 3 quantum dots (QDs) as donors and the CdSe/CdZnS/ZnS QDs as acceptors. This design shortens the fluorescence lifetime of the CsPbBr 3 QDs, while the high PLQY of the FRET system is maintained. By controlling the FRET process, the CsPbBr 3 QDs achieve a record‐breaking data rate of 980 Mbps using On‐Off Keying modulation, a 3.56‐fold increase from the initial 215 Mbps. The resulting WLEDs demonstrate white‐light data rates of 1.77 Gbps under discrete multitone modulation. This work provides a new strategy to break the speed‐efficiency trade‐off in luminescent materials, bridging the gap between energy‐efficient lighting and ultrafast optical communication systems for next‐generation communication technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI