An artificial intelligence‐enabled electrocardiogram algorithm for the prediction of left atrial low‐voltage areas in persistent atrial fibrillation

医学 心房颤动 心脏病学 内科学 算法 P波 计算机科学
作者
Yirao Tao,Deyun Zhang,Chen Tan,Yanjiang Wang,Liang Shi,Hongjie Chi,Shijia Geng,Zhimin Ma,Shenda Hong,Xing Peng Liu
出处
期刊:Journal of Cardiovascular Electrophysiology [Wiley]
卷期号:35 (9): 1849-1858 被引量:1
标识
DOI:10.1111/jce.16373
摘要

Abstract Objectives We aimed to construct an artificial intelligence‐enabled electrocardiogram (ECG) algorithm that can accurately predict the presence of left atrial low‐voltage areas (LVAs) in patients with persistent atrial fibrillation. Methods The study included 587 patients with persistent atrial fibrillation who underwent catheter ablation procedures between March 2012 and December 2023 and 942 scanned images of 12‐lead ECGs obtained before the ablation procedures were performed. Artificial intelligence‐based algorithms were used to construct models for predicting the presence of LVAs. The DR‐FLASH and APPLE clinical scores for LVA prediction were calculated. We used a receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis to evaluate model performance. Results The data obtained from the participants were split into training ( n = 469), validation ( n = 58), and test sets ( n = 60). LVAs were detected in 53.7% of all participants. Using ECG alone, the deep learning algorithm achieved an area under the ROC curve (AUROC) of 0.752, outperforming both the DR‐FLASH score (AUROC = 0.610) and the APPLE score (AUROC = 0.510). The random forest classification model, which integrated a probabilistic deep learning model and clinical features, showed a maximum AUROC of 0.759. Moreover, the ECG‐based deep learning algorithm for predicting extensive LVAs achieved an AUROC of 0.775, with a sensitivity of 0.816 and a specificity of 0.896. The random forest classification model for predicting extensive LVAs achieved an AUROC of 0.897, with a sensitivity of 0.862, and a specificity of 0.935. Conclusion The deep learning model based exclusively on ECG data and the machine learning model that combined a probabilistic deep learning model and clinical features both predicted the presence of LVAs with a higher degree of accuracy than the DR‐FLASH and the APPLE risk scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lingjuanwu完成签到,获得积分10
刚刚
1秒前
2秒前
科研通AI2S应助唐九采纳,获得10
3秒前
koitoyu发布了新的文献求助10
4秒前
AzA发布了新的文献求助10
5秒前
今后应助白日幻想家采纳,获得10
5秒前
打打应助铠甲勇士采纳,获得10
5秒前
wangying完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
11秒前
大个应助wangying采纳,获得30
11秒前
11秒前
刻苦的嫣发布了新的文献求助10
13秒前
13秒前
luoguixun发布了新的文献求助10
15秒前
微笑友容完成签到,获得积分10
16秒前
nihao发布了新的文献求助10
16秒前
铠甲勇士发布了新的文献求助10
17秒前
17秒前
卡卡西应助早川秋Akaiii采纳,获得10
18秒前
18秒前
虚拟的以南完成签到,获得积分10
19秒前
20秒前
luoguixun完成签到,获得积分10
20秒前
8R60d8应助小秋采纳,获得10
21秒前
科目三应助沙力VAN采纳,获得10
23秒前
23秒前
OnionJJ应助负责凝云采纳,获得10
23秒前
牧长一完成签到 ,获得积分0
24秒前
24秒前
静静完成签到,获得积分10
25秒前
26秒前
领导范儿应助科研通管家采纳,获得10
27秒前
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354991
关于积分的说明 10373724
捐赠科研通 3071509
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811345
科研通“疑难数据库(出版商)”最低求助积分说明 766619