Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery

遥感 比例(比率) 计算机科学 卫星 卫星图像 连接(主束) 目标检测 人工智能 计算机视觉 地质学 模式识别(心理学) 地图学 地理 天文 数学 物理 几何学
作者
Fan Zhang,Lingling Li,Licheng Jiao,Xu Liu,Fang Liu,Shuyuan Yang,Biao Hou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-23
标识
DOI:10.1109/tgrs.2024.3440881
摘要

Satellite imagery, due to its long-range imaging, brings with it a variety of scale-preferred tasks, such as the detection of tiny/small objects, making the precise localization and detection of small objects of interest a challenging task. In this article, we design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction. Renormalized connection (RC) on the KDN enables ``synergistic focusing'' of multi-scale features. Based on our observations of KDN, we abstract a class of RCs with different connection strengths, called n21C, and generalize it to FPN-based multi-branch detectors. In a series of FPN experiments on the scale-preferred tasks, we found that the ``divide-and-conquer'' idea of FPN severely hampers the detector's learning in the right direction due to the large number of large-scale negative samples and interference from background noise. Moreover, these negative samples cannot be eliminated by the focal loss function. The RCs extends the multi-level feature's ``divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks, and enables synergistic effects of multi-level features on the specific learning goal. In addition, interference activations in two aspects are greatly reduced and the detector learns in a more correct direction. Extensive experiments of 17 well-designed detection architectures embedded with n21s on five different levels of scale-preferred tasks validate the effectiveness and efficiency of the RCs. Especially the simplest linear form of RC, E421C performs well in all tasks and it satisfies the scaling property of RGT. We hope that our approach will transfer a large number of well-designed detectors from the computer vision community to the remote sensing community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Hiker采纳,获得10
刚刚
1秒前
1秒前
2秒前
kay发布了新的文献求助10
2秒前
JerryZ发布了新的文献求助10
3秒前
旧辞发布了新的文献求助10
3秒前
上官若男应助和谐的梦蕊采纳,获得10
4秒前
yyytr完成签到,获得积分10
4秒前
5秒前
烟花应助吴谷杂粮采纳,获得10
5秒前
lilyliu发布了新的文献求助10
6秒前
jhb发布了新的文献求助10
6秒前
6秒前
善学以致用应助kitty采纳,获得10
7秒前
上官若男应助不安乐菱采纳,获得30
7秒前
8秒前
007发布了新的文献求助10
9秒前
田様应助超帅凡阳采纳,获得10
9秒前
10秒前
葛藟萦藤发布了新的文献求助10
11秒前
狂野砖头发布了新的文献求助10
11秒前
lilyliu完成签到,获得积分10
13秒前
祁祁发布了新的文献求助30
14秒前
cv完成签到,获得积分20
14秒前
14秒前
齐嘉懿发布了新的文献求助10
14秒前
哈哈哈发布了新的文献求助10
15秒前
15秒前
十二完成签到,获得积分10
15秒前
16秒前
16秒前
受伤的小松鼠完成签到,获得积分10
17秒前
joey完成签到,获得积分10
17秒前
Hugo完成签到,获得积分10
18秒前
CodeCraft应助丁真先生采纳,获得10
19秒前
吴谷杂粮发布了新的文献求助10
19秒前
20秒前
不安乐菱发布了新的文献求助30
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056