Are Recommendation Systems Annoying? An Empirical Study of Assessing the Impacts of AI Characteristics on Technology Well‐Being

实证研究 心理学 应用心理学 业务 数学 统计
作者
Zi Wang,Ruizhi Yuan,Boying Li
出处
期刊:Journal of Consumer Behaviour [Wiley]
被引量:2
标识
DOI:10.1002/cb.2408
摘要

ABSTRACT Recommendation systems—that is, a class of machine learning algorithm tools that filter vendors' offerings based on customer data and automatically recommend or generate personalized predictions—are empowered by artificial intelligence (AI) technology and embedded with AI characteristics; but the potential consequences for customer well‐being are greatly overlooked. Hence, this research investigates the impact of AI characteristics on technology well‐being (self‐efficacy, technology satisfaction, emotional dissonance, and autonomy) through two mechanisms: intuitiveness versus intrusiveness. A literature review which conceptualizes AI characteristics and technology well‐being in the recommendation system context is followed by a US‐based survey approach which shows that higher levels of information optimization, predictability, human likeness, and customizability lead to higher levels of intuitiveness, whereas only information optimization and human likeness leads to increased intrusiveness. However, both intuitiveness and intrusiveness are found to promote technology well‐being in the context of a recommendation system, especially for those more vulnerable individuals who respond positively to intrusiveness. Hence, the conclusion is “the recommendations are not always annoying,” whereby the relationships between AI characteristics and technology well‐being are significantly influenced by perceived intrusiveness. These findings help business practitioners to identify how consumers perceive and engage different AI characteristics, and therefore could better take care of technology well‐being while boosting AI development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
炸骐发布了新的文献求助10
刚刚
怕黑向秋发布了新的文献求助10
刚刚
刚刚
cc完成签到,获得积分20
2秒前
2秒前
2秒前
杜妤涵完成签到,获得积分10
3秒前
挺喜欢你发布了新的文献求助10
3秒前
4秒前
Breeze完成签到 ,获得积分10
4秒前
天道酬勤完成签到,获得积分10
5秒前
cjt发布了新的文献求助10
5秒前
柴子完成签到,获得积分10
6秒前
雨安完成签到,获得积分10
6秒前
6秒前
哪有人不疯的完成签到 ,获得积分10
6秒前
完美世界应助Pendulium采纳,获得10
7秒前
cc发布了新的文献求助10
7秒前
充电宝应助苹果采纳,获得10
8秒前
8秒前
怕黑向秋完成签到,获得积分10
8秒前
羊羊完成签到 ,获得积分10
9秒前
张景赛完成签到 ,获得积分10
9秒前
刘泽发布了新的文献求助10
10秒前
vv发布了新的文献求助10
11秒前
华仔应助wumandong采纳,获得10
12秒前
Khr1stINK完成签到,获得积分10
13秒前
imol完成签到,获得积分20
15秒前
www完成签到 ,获得积分10
15秒前
无花果应助ellieou采纳,获得10
15秒前
15秒前
davyean完成签到,获得积分10
17秒前
李美兰完成签到 ,获得积分10
18秒前
19秒前
21秒前
21秒前
花花发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490042
求助须知:如何正确求助?哪些是违规求助? 4588835
关于积分的说明 14421391
捐赠科研通 4520586
什么是DOI,文献DOI怎么找? 2476785
邀请新用户注册赠送积分活动 1462268
关于科研通互助平台的介绍 1435171