Integrating Large Language Model, EEG, and Eye-Tracking for Word-Level Neural State Classification in Reading Comprehension

计算机科学 眼动 词(群论) 人工智能 自然语言处理 理解力 阅读(过程) 脑电图 语音识别 语言学 心理学 神经科学 哲学 程序设计语言
作者
Yuhong Zhang,Qin Li,Sujal Nahata,Tasnia Jamal,Shih-kuen Cheng,Gert Cauwenberghs,Tzyy‐Ping Jung
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 3465-3475
标识
DOI:10.1109/tnsre.2024.3435460
摘要

With the recent proliferation of large language models (LLMs), such as Generative Pre-trained Transformers (GPT), there has been a significant shift in exploring human and machine comprehension of semantic language meaning. This shift calls for interdisciplinary research that bridges cognitive science and natural language processing (NLP). This pilot study aims to provide insights into individuals' neural states during a semantic inference reading-comprehension task. We propose jointly analyzing LLMs, eye-gaze, and electroencephalographic (EEG) data to study how the brain processes words with varying degrees of relevance to a keyword during reading. We also use feature engineering to improve the fixation-related EEG data classification while participants read words with high versus low relevance to the keyword. The best validation accuracy in this word-level classification is over 60% across 12 subjects. Words highly relevant to the inference keyword received significantly more eye fixations per word: 1.0584 compared to 0.6576, including words with no fixations. This study represents the first attempt to classify brain states at a word level using LLM-generated labels. It provides valuable insights into human cognitive abilities and Artificial General Intelligence (AGI), and offers guidance for developing potential reading-assisted technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助123采纳,获得10
1秒前
敏感的寒烟应助17ss采纳,获得10
2秒前
重要尔柳完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
Alex发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
6秒前
DLL完成签到 ,获得积分10
6秒前
Jefferson完成签到,获得积分10
6秒前
无花果应助张贵虎采纳,获得10
7秒前
研友_VZG7GZ应助li采纳,获得10
7秒前
7秒前
Lucas应助Alex采纳,获得10
8秒前
所所应助Alex采纳,获得10
8秒前
NexusExplorer应助Alex采纳,获得10
8秒前
8秒前
魏曼柔完成签到,获得积分10
8秒前
8秒前
快乐小王完成签到,获得积分10
9秒前
bc应助高兴的晓蓝采纳,获得20
9秒前
9秒前
sunchaoyue发布了新的文献求助10
9秒前
淡淡夕阳发布了新的文献求助10
10秒前
11秒前
MRM完成签到 ,获得积分10
12秒前
LooQueSiento发布了新的文献求助10
12秒前
13秒前
13秒前
李健的粉丝团团长应助yuan采纳,获得10
13秒前
柯柯完成签到,获得积分10
14秒前
科研通AI5应助年三月采纳,获得10
14秒前
14秒前
人人发布了新的文献求助10
14秒前
爆米花应助WANG采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817682
求助须知:如何正确求助?哪些是违规求助? 3360954
关于积分的说明 10410402
捐赠科研通 3079042
什么是DOI,文献DOI怎么找? 1690956
邀请新用户注册赠送积分活动 814272
科研通“疑难数据库(出版商)”最低求助积分说明 768068