已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DST-DETR: Image Dehazing RT-DETR for Safety Helmet Detection in Foggy Weather

计算机科学 能见度 稳健性(进化) 目标检测 实时计算 遥感 人工智能 模式识别(心理学) 气象学 生物化学 化学 物理 基因 地质学
作者
Ziyuan Liu,Chunxia Sun,Xiaopeng Wang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4628-4628
标识
DOI:10.3390/s24144628
摘要

In foggy weather, outdoor safety helmet detection often suffers from low visibility and unclear objects, hindering optimal detector performance. Moreover, safety helmets typically appear as small objects at construction sites, prone to occlusion and difficult to distinguish from complex backgrounds, further exacerbating the detection challenge. Therefore, the real-time and precise detection of safety helmet usage among construction personnel, particularly in adverse weather conditions such as foggy weather, poses a significant challenge. To address this issue, this paper proposes the DST-DETR, a framework for foggy weather safety helmet detection. The DST-DETR framework comprises a dehazing module, PAOD-Net, and an object detection module, ST-DETR, for joint dehazing and detection. Initially, foggy images are restored within PAOD-Net, enhancing the AOD-Net model by introducing a novel convolutional module, PfConv, guided by the parameter-free average attention module (PfAAM). This module enables more focused attention on crucial features in lightweight models, therefore enhancing performance. Subsequently, the MS-SSIM + ℓ2 loss function is employed to bolster the model’s robustness, making it adaptable to scenes with intricate backgrounds and variable fog densities. Next, within the object detection module, the ST-DETR model is designed to address small objects. By refining the RT-DETR model, its capability to detect small objects in low-quality images is enhanced. The core of this approach lies in utilizing the variant ResNet-18 as the backbone to make the network lightweight without sacrificing accuracy, followed by effectively integrating the small-object layer into the improved BiFPN neck structure, resulting in CCFF-BiFPN-P2. Various experiments were conducted to qualitatively and quantitatively compare our method with several state-of-the-art approaches, demonstrating its superiority. The results validate that the DST-DETR algorithm is better suited for foggy safety helmet detection tasks in construction scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZB完成签到,获得积分10
1秒前
共享精神应助annis采纳,获得10
1秒前
1秒前
2秒前
Deadman完成签到,获得积分10
2秒前
阿徐呀完成签到,获得积分20
4秒前
七七完成签到 ,获得积分10
5秒前
SciGPT应助两斤采纳,获得10
5秒前
寒冷晓凡发布了新的文献求助10
5秒前
完美世界应助土豪的白卉采纳,获得10
9秒前
个性半山完成签到 ,获得积分10
10秒前
Belief完成签到,获得积分10
10秒前
11秒前
11秒前
落落完成签到 ,获得积分0
12秒前
14秒前
14秒前
高屋建瓴完成签到,获得积分10
15秒前
6哈哈完成签到,获得积分10
15秒前
JJ完成签到,获得积分10
15秒前
峰回路转发布了新的文献求助10
16秒前
CodeCraft应助淡水痕采纳,获得10
16秒前
annis发布了新的文献求助10
17秒前
大力可燕发布了新的文献求助10
18秒前
18秒前
枫威完成签到 ,获得积分10
22秒前
orixero应助遇见采纳,获得10
23秒前
峰回路转完成签到,获得积分10
23秒前
Su发布了新的文献求助10
23秒前
25秒前
26秒前
今夕何夕完成签到,获得积分10
28秒前
30秒前
雾海完成签到,获得积分10
30秒前
XueXiTong完成签到,获得积分10
30秒前
6666完成签到,获得积分10
33秒前
kobiy完成签到 ,获得积分10
34秒前
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590