BinVulDet: Detecting vulnerability in binary program via decompiled pseudo code and BiLSTM-attention

脆弱性(计算) 计算机科学 二进制数 程序切片 脆弱性评估 编码(集合论) 二进制代码 软件 编译程序 数据挖掘 人工智能 计算机安全 数学 程序设计语言 算术 集合(抽象数据类型) 心理学 心理弹性 心理治疗师
作者
Yan Wang,Peng Jia,Xi Peng,Cheng Huang,Jiayong Liu
出处
期刊:Computers & Security [Elsevier BV]
卷期号:125: 103023-103023 被引量:21
标识
DOI:10.1016/j.cose.2022.103023
摘要

Static detection of security vulnerabilities in binary programs is an important research field in software supply chain security. However, existing vulnerability detection methods based on code similarity can only detect known vulnerabilities. Vulnerability features generated by vulnerability pattern-based detection methods are low robust due to the influence of manually defined patterns, compiler diversity, and irrelevant function instructions. In this paper, we propose BinVulDet, which is a binary level vulnerability detection tool for accurate known and unknown vulnerability detection. BinVulDet uses decompilation techniques to obtain pseudo code containing high-level semantic information against the impact of compilation diversity. Then the program slicing technique is used to extract the statements with data dependencies and control dependencies related to the vulnerability. A BiLSTM-attention neural network is used to extract rich contextual semantic information from slice codes to generate more robust vulnerability patterns to detect vulnerabilities. The experimental results show that BinVulDet outperforms the state-of-the-art binary vulnerability detection methods. The FPR and FNR of BinVulDet are 1.04% and 0.89% on average, respectively, which are 3.93% and 22.86% lower than the baseline model on average. BinVulDet can effectively against the influence of compilation diversity and successfully be used for real-world vulnerability detection by being evaluated in three CVE vulnerability projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐宝完成签到,获得积分10
刚刚
1秒前
zpw123完成签到,获得积分10
1秒前
2秒前
2秒前
lljllj发布了新的文献求助10
3秒前
动听靖完成签到 ,获得积分10
4秒前
wanci应助123采纳,获得10
4秒前
5秒前
yanwu发布了新的文献求助10
5秒前
濠哥妈咪发布了新的文献求助10
6秒前
Jackcaosky完成签到 ,获得积分10
6秒前
2211发布了新的文献求助10
6秒前
小马甲应助典雅的俊驰采纳,获得10
7秒前
领导范儿应助lljllj采纳,获得10
8秒前
小布完成签到 ,获得积分10
9秒前
10秒前
风景的谷建芬完成签到,获得积分10
11秒前
善学以致用应助ATOM采纳,获得10
13秒前
xd完成签到,获得积分20
14秒前
14秒前
Nicole完成签到 ,获得积分10
15秒前
机智的雨寒完成签到,获得积分10
16秒前
16秒前
思源应助研友_5Zl9D8采纳,获得10
21秒前
十九发布了新的文献求助30
21秒前
liu_关注了科研通微信公众号
22秒前
23秒前
无昵称完成签到 ,获得积分10
25秒前
26秒前
研友_5Zl9D8发布了新的文献求助10
26秒前
adam完成签到,获得积分10
26秒前
26秒前
xd发布了新的文献求助10
27秒前
back you up应助科研通管家采纳,获得30
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
hutu发布了新的文献求助10
27秒前
擦擦完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742