Theoretical analysis of cooling mechanism in high-speed ultrasonic vibration cutting interfaces

有限元法 冷却液 材料科学 振动 机械加工 机械工程 超声波传感器 刀具 刀具磨损 钛合金 流动可视化 计算机科学 流量(数学) 声学 结构工程 机械 复合材料 冶金 工程类 物理 合金
作者
Xiangyu Zhang,Zhenlong Peng,Dongyue Wang,Liangbao Liu
出处
期刊:International Journal of Thermal Sciences [Elsevier BV]
卷期号:184: 108033-108033
标识
DOI:10.1016/j.ijthermalsci.2022.108033
摘要

Cutting temperature has been found as the key factor for the tool life and surface quality during the machining of the difficult-to-cut materials (e.g., titanium and super alloys). To control the cutting temperature, a high-speed ultrasonic vibration cutting (HUVC) method has been proposed by existing research, in which the tool and workpiece have periodic separations and thus open the closed cutting interfaces compared with conventional cutting (CC). On that basis, the coolant can penetrate in the cutting interfaces which is quite different from the cooling methods for CC. Accordingly, in this study, Finite element method (FEM) and experiment methods were used to examine the cooling mechanism in the opened cutting interfaces based on the coolant state, which can guide further scientific research and engineering application of HUVC or even CC. At first, the expanded conventional model and the ultrasonic vibration model used to describe CC and HUVC were developed. Subsequently, FEM was used to examine the transient states of the velocity, pressure, temperature and synergy angle fields in the interfaces opening process. Next, ultrasonic vibration interfaces observation through high-speed visualization was conducted to verify the accuracy of the calculation results using the FEM. Lastly, the cutting experiments on titanium alloys were performed to verify the trends of the FEM results. As revealed by the results, ultrasonic vibration would lead to reversed flows by the negative pressure generated when the interfaces were opening. Subsequently, this reversed flow would lead to the formation of unstable thermal boundary layer, thus increasing the field synergic effect, which directly enhanced the heat flux and convection of the coolant in the opened cutting interfaces. • Cooling mechanism are revealed from the aspect of coolant state. • Coolant state is observed through high-speed visualization. • Unstable thermal boundary layer is the core factor of effective cooling. • Well field synergic effect is the reason of heat transfer enhancement by ultrasonic vibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李哈哈发布了新的文献求助10
刚刚
熊巴巴完成签到 ,获得积分10
5秒前
6秒前
6秒前
想发sci完成签到,获得积分10
6秒前
王SQ完成签到 ,获得积分10
7秒前
AmyHu完成签到,获得积分10
7秒前
栗荔完成签到 ,获得积分10
8秒前
害羞的书芹完成签到,获得积分10
9秒前
无敌小邓历险记完成签到 ,获得积分20
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科目三应助lanadalray采纳,获得10
15秒前
sunrise_99完成签到,获得积分10
16秒前
竹筏过海应助星空采纳,获得30
16秒前
甜甜恋风完成签到,获得积分10
18秒前
20秒前
深情安青应助zky采纳,获得10
21秒前
小蘑菇应助未知数采纳,获得10
22秒前
gnufgg完成签到,获得积分10
23秒前
烟花应助闫昕采纳,获得10
24秒前
just_cook完成签到,获得积分10
24秒前
甜甜恋风发布了新的文献求助10
25秒前
Karry发布了新的文献求助10
26秒前
26秒前
热情的元芹完成签到,获得积分10
26秒前
29秒前
dong东包发布了新的文献求助10
30秒前
30秒前
小破网完成签到 ,获得积分0
31秒前
31秒前
Virgil完成签到 ,获得积分10
31秒前
Ellen完成签到,获得积分10
31秒前
趣多多发布了新的文献求助10
33秒前
爆米花应助dong东包采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782905
求助须知:如何正确求助?哪些是违规求助? 3328212
关于积分的说明 10235338
捐赠科研通 3043308
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799719
科研通“疑难数据库(出版商)”最低求助积分说明 759033