Early Triage of Critically Ill Adult Patients With Mushroom Poisoning: Machine Learning Approach

急诊分诊台 医学 机器学习 接收机工作特性 蘑菇中毒 队列 人工智能 梯度升压 急诊医学 毒物控制 内科学 计算机科学 随机森林
作者
Yuxuan Liu,Xiaoguang Lyu,Bo Yang,Zhixiang Fang,Dejun Hu,Lei Shi,Bisheng Wu,Yong Tian,Enli Zhang,YuanChao Yang
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e44666-e44666 被引量:3
标识
DOI:10.2196/44666
摘要

Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical data.The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies.In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning. Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity, specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations.Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set, the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians' assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73).The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients, potentially reducing patient mortality and improving clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
redamancy发布了新的文献求助10
刚刚
赘婿应助barry采纳,获得10
刚刚
平淡的半青完成签到,获得积分10
刚刚
小甘看世界完成签到,获得积分10
2秒前
3秒前
斯文败类应助dinghaifeng采纳,获得10
4秒前
4秒前
4秒前
orixero应助平淡的半青采纳,获得10
4秒前
爆米花应助KULI采纳,获得10
4秒前
6秒前
6秒前
6秒前
超帅的从菡完成签到,获得积分10
6秒前
bkagyin应助火星上惋庭采纳,获得10
7秒前
KK发布了新的文献求助10
8秒前
Hello应助勤奋翠霜采纳,获得10
9秒前
9秒前
Meloqi发布了新的文献求助10
9秒前
曹原阁发布了新的文献求助10
9秒前
Belief完成签到,获得积分10
9秒前
科研通AI5应助机灵猎豹采纳,获得10
10秒前
10秒前
ll发布了新的文献求助10
10秒前
阿凯完成签到 ,获得积分10
11秒前
12秒前
13秒前
小马甲应助KK采纳,获得10
13秒前
14秒前
秀丽文轩发布了新的文献求助10
15秒前
15秒前
KULI发布了新的文献求助10
18秒前
今后应助着急的小松鼠采纳,获得10
19秒前
dinghaifeng发布了新的文献求助10
19秒前
粗心的绾绾给Wang123的求助进行了留言
19秒前
善学以致用应助yu采纳,获得10
20秒前
21秒前
iNk应助拉长的乌冬面采纳,获得20
23秒前
23秒前
sunshine完成签到 ,获得积分20
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814553
求助须知:如何正确求助?哪些是违规求助? 3358709
关于积分的说明 10397030
捐赠科研通 3076053
什么是DOI,文献DOI怎么找? 1689681
邀请新用户注册赠送积分活动 813195
科研通“疑难数据库(出版商)”最低求助积分说明 767514