A roller-bearing-based triboelectric nanosensor for freight train synergistic maintenance in smart transportation

摩擦电效应 火车 纳米传感器 材料科学 汽车工程 方位(导航) 电势能 能量(信号处理) 信号(编程语言) 动力传动系统 铁路货物运输 纳米技术 复合材料 工程类 计算机科学 人工智能 程序设计语言 地理 统计 地图学 数学 物理 扭矩 热力学
作者
Zheng Fang,Zijie Zhou,Minyi Yi,Zutao Zhang,Xiao Luo,Ammar Ahmed
出处
期刊:Nano Energy [Elsevier BV]
卷期号:106: 108089-108089 被引量:41
标识
DOI:10.1016/j.nanoen.2022.108089
摘要

Rail freight is a vital part of global economic development. The hunting instability of freight trains seriously affects safety. The lack of electrical pipelines between freight trains makes the energy of onboard monitoring equipment an urgent problem to be solved. In this paper, an energy self-consistent system (ESCS) based on a roller-bearing-based triboelectric nanosensor is proposed to detect the running status of freight trains while providing electric energy. The proposed ESCS consists of two modules: a roller-bearing-based triboelectric nanosensor (RB-TENS) module and a detection module. The RB-TENS module innovatively combines the advantages of low damping and wear resistance of roller bearings. Moreover, it incorporates energy harvesting and running status sensing for freight trains. While converting the train’s vibrational kinetic energy into electrical energy and storing it, the electrical signal containing the characteristics of the train’s running status is collected. The detection module includes a pre-processing module and a deep learning model based on LSTM. The characteristic electrical signal collected by RB-TENS is enhanced and extracted by the pre-processing module to generate training and testing sets. Using data set training and testing deep learning model, the freight train running status was recognized. On this basis, a dynamic model is established to study the effects of different axle loads, speeds, and pre-processing parameters on the vibration response, electrical performance, and deep learning model of the ESCS. Experiments show that the peak output power and energy density of RB-TENS reach 1.9 μW and 72 mW/m3. The results of the testing set show that the detection accuracy of ESCS reaches 96.6%, indicating that it can effectively detect the hunting instability of freight trains. This ESCS enables TENS to present a breakthrough in smart transportation and practical applications of the zero-energy Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助司阔林采纳,获得10
刚刚
2秒前
2秒前
bxl完成签到,获得积分10
2秒前
3秒前
DuanYuanni完成签到,获得积分10
3秒前
英俊的铭应助香蕉子骞采纳,获得10
5秒前
老北京完成签到,获得积分10
5秒前
mk发布了新的文献求助10
7秒前
夢loey发布了新的文献求助10
7秒前
独特觅儿完成签到,获得积分10
9秒前
perovskite完成签到,获得积分10
9秒前
认真的adai发布了新的文献求助30
9秒前
Gauss完成签到,获得积分0
11秒前
qqqq发布了新的文献求助10
12秒前
mk完成签到,获得积分10
12秒前
聪慧的松鼠完成签到,获得积分10
13秒前
13秒前
Auston_zhong应助TaoJ采纳,获得10
17秒前
HEIKU应助白猹采纳,获得10
17秒前
戴_1233发布了新的文献求助10
18秒前
香蕉子骞发布了新的文献求助10
18秒前
隐形的傲易完成签到 ,获得积分10
19秒前
Akim应助TORCH采纳,获得30
20秒前
通通通发布了新的文献求助10
20秒前
Sky完成签到,获得积分10
20秒前
Zoe完成签到,获得积分10
22秒前
小透明发布了新的文献求助30
23秒前
qqqq完成签到,获得积分10
24秒前
阳佟半仙完成签到,获得积分10
26秒前
冰魂应助通通通采纳,获得10
28秒前
Alex发布了新的文献求助10
28秒前
29秒前
30秒前
甜美三娘完成签到,获得积分10
30秒前
wander完成签到 ,获得积分10
32秒前
32秒前
正直夜梅完成签到 ,获得积分10
37秒前
39秒前
奥特曼发布了新的文献求助40
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10214106
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290