Enhanced High‐Temperature Energy Storage Performance of All‐Organic Composite Dielectric via Constructing Fiber‐Reinforced Structure

聚醚酰亚胺 聚酰亚胺 材料科学 复合数 电介质 复合材料 纤维 储能 聚合物 光电子学 量子力学 物理 功率(物理) 图层(电子)
作者
Mengjia Feng,Yu Feng,Changhai Zhang,Tiandong Zhang,Xu Tong,Qiang Gao,Qingguo Chen,Qingguo Chi
出处
期刊:Energy & environmental materials [Wiley]
卷期号:7 (2) 被引量:41
标识
DOI:10.1002/eem2.12571
摘要

Optimizing the high‐temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems. Selecting a polymer with a higher glass transition temperature ( T g ) as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature. However, current high‐ T g polymers have limitations, and it is difficult to meet the demand for high‐temperature energy storage dielectrics with only one polymer. For example, polyetherimide has high‐energy storage efficiency, but low breakdown strength at high temperatures. Polyimide has high corona resistance, but low high‐temperature energy storage efficiency. In this work, combining the advantages of two polymer, a novel high‐ T g polymer fiber‐reinforced microstructure is designed. Polyimide is designed as extremely fine fibers distributed in the composite dielectric, which will facilitate the reduction of high‐temperature conductivity loss for polyimide. At the same time, due to the high‐temperature resistance and corona resistance of polyimide, the high‐temperature breakdown strength of the composite dielectric is enhanced. After the polyimide content with the best high‐temperature energy storage characteristics is determined, molecular semiconductors (ITIC) are blended into the polyimide fibers to further improve the high‐temperature efficiency. Ultimately, excellent high‐temperature energy storage properties are obtained. The 0.25 vol% ITIC‐polyimide/polyetherimide composite exhibits high‐energy density and high discharge efficiency at 150 °C (2.9 J cm −3 , 90%) and 180 °C (2.16 J cm −3 , 90%). This work provides a scalable design idea for high‐performance all‐organic high‐temperature energy storage dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助吴老四采纳,获得10
1秒前
oldyang完成签到,获得积分10
5秒前
许某希完成签到 ,获得积分10
5秒前
简单的易云完成签到,获得积分10
6秒前
李小小飞完成签到,获得积分10
6秒前
小野狼完成签到,获得积分10
8秒前
GXLong完成签到,获得积分10
8秒前
加油少年完成签到,获得积分10
13秒前
金甲狮王完成签到,获得积分10
13秒前
MiManchi完成签到,获得积分10
13秒前
学吧完成签到,获得积分10
13秒前
小陈完成签到,获得积分10
14秒前
谢雷XIELei完成签到,获得积分20
15秒前
Giant06230824完成签到,获得积分10
15秒前
饱满的新之完成签到 ,获得积分10
17秒前
小洋完成签到 ,获得积分10
17秒前
ferritin完成签到 ,获得积分10
17秒前
nn完成签到,获得积分10
18秒前
ada完成签到,获得积分10
18秒前
20秒前
X先生完成签到 ,获得积分10
22秒前
24秒前
周先森完成签到,获得积分10
24秒前
magic_sweets完成签到,获得积分10
24秒前
cg完成签到 ,获得积分10
29秒前
诸葛烤鸭完成签到,获得积分10
29秒前
29秒前
QQLL发布了新的文献求助10
30秒前
科研通AI5应助zhul采纳,获得10
30秒前
安详的自中完成签到,获得积分10
32秒前
赘婿应助科研通管家采纳,获得10
33秒前
打打应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得30
34秒前
rayqiang完成签到,获得积分0
34秒前
丘比特应助科研通管家采纳,获得10
34秒前
34秒前
海豚有海完成签到 ,获得积分10
35秒前
危机的囧发布了新的文献求助10
35秒前
cdercder应助Giant06230824采纳,获得10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798557
求助须知:如何正确求助?哪些是违规求助? 3344128
关于积分的说明 10318663
捐赠科研通 3060696
什么是DOI,文献DOI怎么找? 1679782
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353