Multi-Label Feature Selection via Label Enhancement and Analytic Hierarchy Process

特征选择 计算机科学 特征(语言学) 加权 最小冗余特征选择 数据挖掘 启发式 人工智能 模式识别(心理学) 多标签分类 降维 选择(遗传算法) 排名(信息检索) 过程(计算) 相似性(几何) 机器学习 公制(单位) 维数之咒 工程类 操作系统 图像(数学) 放射科 哲学 医学 语言学 运营管理
作者
Jintao Huang,Wenbin Qian,Chi‐Man Vong,Weiping Ding,Wenhao Shu,Qin Huang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (5): 1377-1393 被引量:3
标识
DOI:10.1109/tetci.2022.3231655
摘要

Multi-label feature selection can effectively resolve the challenges of high or even ultra-high dimensionality in multi-label data. However, most existing multi-label feature selection algorithms can only handle a single data type, assume all labels are equally significant and utilize heuristic search strategies, which results in inefficient and relatively unsatisfactory classification accuracy. In view of the above shortcomings, this paper proposes a new multi-label feature selection algorithm that effectively resolves existing algorithms' issues through three innovative procedures. First, a new similarity relation metric is proposed to deal with hybrid data types effectively. Second, a label enhancement algorithm is designed to enhance and transform the logical labels into a label distribution by fully considering the analytic hierarchy process (AHP) embedded with label correlation, which can automatically identify the significance of different labels. Third, a feature weighting evaluation is redesigned in the feature selection process to obtain the optimal feature subset through feature ranking directly. Under these proposed procedures, multi-label feature selection can effectively utilize the abundant semantic information of the label significance and can significantly improve the operating accuracy and efficiency simultaneously. Comparative experiments are conducted on 20 real multi-label datasets with seven state-of-the-art multi-label feature selection algorithms. Experimental results show that the proposed multi-label feature selection algorithm in this paper is about 5–10% better than the algorithms in 80% of the compared datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助水123采纳,获得10
2秒前
儒雅晓霜发布了新的文献求助10
2秒前
温柔的姿发布了新的文献求助10
2秒前
香芹又青完成签到,获得积分10
2秒前
王文学完成签到,获得积分10
5秒前
5秒前
英姑应助健忘蘑菇采纳,获得10
5秒前
科研通AI5应助11111采纳,获得10
5秒前
5秒前
要吃虾饺吗完成签到,获得积分10
6秒前
虚幻的文龙完成签到,获得积分10
6秒前
云边发布了新的文献求助10
6秒前
多肉葡萄关注了科研通微信公众号
7秒前
zz发布了新的文献求助10
7秒前
7秒前
科研通AI5应助王文学采纳,获得10
9秒前
11秒前
李爱国应助霞霞12310采纳,获得10
11秒前
12秒前
开放的大侠完成签到,获得积分10
12秒前
大饼发布了新的文献求助10
14秒前
16秒前
17秒前
skoch完成签到,获得积分10
17秒前
Animagus完成签到,获得积分10
18秒前
疗伤烧肉粽完成签到,获得积分10
18秒前
zzz发布了新的文献求助10
19秒前
hua发布了新的文献求助10
21秒前
驿寄梅花发布了新的文献求助10
21秒前
gattina完成签到,获得积分10
21秒前
火花发布了新的文献求助10
22秒前
Ava应助Wei采纳,获得10
22秒前
凡凡没烦恼完成签到,获得积分10
22秒前
23秒前
浪迹天涯发布了新的文献求助30
23秒前
Lucas应助追风采纳,获得10
24秒前
28秒前
霞霞12310发布了新的文献求助10
29秒前
驿寄梅花完成签到,获得积分20
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794917
求助须知:如何正确求助?哪些是违规求助? 3339846
关于积分的说明 10297717
捐赠科研通 3056457
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805101
科研通“疑难数据库(出版商)”最低求助积分说明 762330