Multi-Label Feature Selection via Label Enhancement and Analytic Hierarchy Process

特征选择 计算机科学 特征(语言学) 加权 最小冗余特征选择 数据挖掘 启发式 人工智能 模式识别(心理学) 多标签分类 降维 选择(遗传算法) 排名(信息检索) 过程(计算) 相似性(几何) 机器学习 公制(单位) 维数之咒 工程类 操作系统 图像(数学) 放射科 哲学 医学 语言学 运营管理
作者
Jintao Huang,Wenbin Qian,Chi‐Man Vong,Weiping Ding,Wenhao Shu,Qin Huang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (5): 1377-1393 被引量:3
标识
DOI:10.1109/tetci.2022.3231655
摘要

Multi-label feature selection can effectively resolve the challenges of high or even ultra-high dimensionality in multi-label data. However, most existing multi-label feature selection algorithms can only handle a single data type, assume all labels are equally significant and utilize heuristic search strategies, which results in inefficient and relatively unsatisfactory classification accuracy. In view of the above shortcomings, this paper proposes a new multi-label feature selection algorithm that effectively resolves existing algorithms' issues through three innovative procedures. First, a new similarity relation metric is proposed to deal with hybrid data types effectively. Second, a label enhancement algorithm is designed to enhance and transform the logical labels into a label distribution by fully considering the analytic hierarchy process (AHP) embedded with label correlation, which can automatically identify the significance of different labels. Third, a feature weighting evaluation is redesigned in the feature selection process to obtain the optimal feature subset through feature ranking directly. Under these proposed procedures, multi-label feature selection can effectively utilize the abundant semantic information of the label significance and can significantly improve the operating accuracy and efficiency simultaneously. Comparative experiments are conducted on 20 real multi-label datasets with seven state-of-the-art multi-label feature selection algorithms. Experimental results show that the proposed multi-label feature selection algorithm in this paper is about 5–10% better than the algorithms in 80% of the compared datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mia_p完成签到,获得积分10
1秒前
4秒前
4秒前
eric888应助刀刀采纳,获得20
4秒前
8秒前
淡淡菠萝发布了新的文献求助10
9秒前
10秒前
11秒前
顾矜应助大气的哈密瓜采纳,获得10
11秒前
11秒前
万能图书馆应助谷大喵唔采纳,获得10
13秒前
zhenghangbin发布了新的文献求助10
16秒前
星辰大海应助123采纳,获得10
17秒前
mg应助Ben采纳,获得10
17秒前
YY完成签到 ,获得积分10
18秒前
爆米花应助似梦非梦采纳,获得10
20秒前
111111完成签到,获得积分10
20秒前
我是老大应助Zoe采纳,获得30
21秒前
CipherSage应助MOMOMOMO采纳,获得10
23秒前
爱科研的小尚同学完成签到,获得积分10
23秒前
24秒前
jianwu完成签到,获得积分10
24秒前
24秒前
26秒前
共享精神应助一派倾城采纳,获得10
26秒前
慕青应助若初拾光采纳,获得10
27秒前
谷大喵唔发布了新的文献求助10
27秒前
28秒前
淡然士晋发布了新的文献求助10
28秒前
29秒前
Alex完成签到,获得积分10
29秒前
呆萌的太阳完成签到 ,获得积分10
34秒前
123发布了新的文献求助10
34秒前
34秒前
34秒前
冤家Gg应助zjs采纳,获得10
35秒前
Shaka发布了新的文献求助60
37秒前
sdbz001完成签到,获得积分0
38秒前
MOMOMOMO发布了新的文献求助10
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4193087
求助须知:如何正确求助?哪些是违规求助? 3728907
关于积分的说明 11744548
捐赠科研通 3404384
什么是DOI,文献DOI怎么找? 1867783
邀请新用户注册赠送积分活动 924151
科研通“疑难数据库(出版商)”最低求助积分说明 835199