已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RNA-binding protein recognition based on multi-view deep feature and multi-label learning

人工智能 RNA结合蛋白 核糖核酸 深度学习 计算机科学 特征(语言学) 计算生物学 相似性(几何) 机器学习 模式识别(心理学) 生物 基因 遗传学 语言学 图像(数学) 哲学
作者
Haitao Yang,Zhaohong Deng,Xiaoyong Pan,Hong-Bin Shen,Kup-Sze Choi,Lei Wang,Shitong Wang,Jing Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:11
标识
DOI:10.1093/bib/bbaa174
摘要

Abstract RNA-binding protein (RBP) is a class of proteins that bind to and accompany RNAs in regulating biological processes. An RBP may have multiple target RNAs, and its aberrant expression can cause multiple diseases. Methods have been designed to predict whether a specific RBP can bind to an RNA and the position of the binding site using binary classification model. However, most of the existing methods do not take into account the binding similarity and correlation between different RBPs. While methods employing multiple labels and Long Short Term Memory Network (LSTM) are proposed to consider binding similarity between different RBPs, the accuracy remains low due to insufficient feature learning and multi-label learning on RNA sequences. In response to this challenge, the concept of RNA-RBP Binding Network (RRBN) is proposed in this paper to provide theoretical support for multi-label learning to identify RBPs that can bind to RNAs. It is experimentally shown that the RRBN information can significantly improve the prediction of unknown RNA−RBP interactions. To further improve the prediction accuracy, we present the novel computational method iDeepMV which integrates multi-view deep learning technology under the multi-label learning framework. iDeepMV first extracts data from the views of amino acid sequence and dipeptide component based on the RNA sequences as the original view. Deep neural network models are then designed for the respective views to perform deep feature learning. The extracted deep features are fed into multi-label classifiers which are trained with the RNA−RBP interaction information for the three views. Finally, a voting mechanism is designed to make comprehensive decision on the results of the multi-label classifiers. Our experimental results show that the prediction performance of iDeepMV, which combines multi-view deep feature learning models with RNA−RBP interaction information, is significantly better than that of the state-of-the-art methods. iDeepMV is freely available at http://www.csbio.sjtu.edu.cn/bioinf/iDeepMV for academic use. The code is freely available at http://github.com/uchihayht/iDeepMV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
1111发布了新的文献求助10
8秒前
甜甜的难敌完成签到,获得积分10
8秒前
隐形曼青应助凉雨街采纳,获得10
10秒前
10秒前
新海天发布了新的文献求助10
13秒前
hhh完成签到 ,获得积分10
14秒前
14秒前
a553355完成签到,获得积分10
15秒前
尘默完成签到,获得积分20
18秒前
大大小小发布了新的文献求助10
21秒前
21秒前
FashionBoy应助kjding采纳,获得10
22秒前
25秒前
肥肥发布了新的文献求助10
25秒前
英俊的铭应助孝顺的尔丝采纳,获得10
25秒前
26秒前
pcr163应助科研通管家采纳,获得30
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
美好斓应助科研通管家采纳,获得100
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
28秒前
迟迟完成签到 ,获得积分10
29秒前
称心涵柳发布了新的文献求助10
31秒前
kjding发布了新的文献求助10
32秒前
33秒前
zefer完成签到,获得积分20
34秒前
遥知马发布了新的文献求助10
34秒前
35秒前
则以发布了新的文献求助10
37秒前
37秒前
黄天发布了新的文献求助30
40秒前
科研通AI5应助WUYONGSHUAI采纳,获得10
41秒前
43秒前
44秒前
CipherSage应助称心涵柳采纳,获得10
45秒前
47秒前
47秒前
万能图书馆应助则以采纳,获得10
48秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819660
求助须知:如何正确求助?哪些是违规求助? 3362675
关于积分的说明 10417980
捐赠科研通 3080815
什么是DOI,文献DOI怎么找? 1694798
邀请新用户注册赠送积分活动 814781
科研通“疑难数据库(出版商)”最低求助积分说明 768462