计算机科学
散列函数
人工智能
模式识别(心理学)
二进制代码
判别式
图像检索
聚类分析
特征哈希
量化(信号处理)
深度学习
无监督学习
哈希表
二进制数
图像(数学)
算法
双重哈希
数学
计算机安全
算术
标识
DOI:10.1587/transfun.2020eal2056
摘要
Hashing methods have proven to be effective algorithm for image retrieval. However, learning discriminative hash codes is challenging for unsupervised models. In this paper, we propose a novel distinguishable image retrieval framework, named Unsupervised Deep Embedded Hashing (UDEH), to recursively learn discriminative clustering through soft clustering models and generate highly similar binary codes. We reduce the data dimension by auto-encoder and apply binary constraint loss to reduce quantization error. UDEH can be jointly optimized by standard stochastic gradient descent (SGD) in the embedd layer. We conducted a comprehensive experiment on two popular datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI