A novel quality evaluation method for magnolia bark using electronic nose and colorimeter data with multiple statistical algorithms

厚朴酚 厚朴 电子鼻 色度计 和厚朴酚 气味 化学 树皮(声音) 色谱法 传统医学 数学 人工智能 中医药 计算机科学 医学 有机化学 病理 替代医学 物理 量子力学 声学
作者
Jiahui Li,Yuanyang Shao,Yuebao Yao,Yuetong Yu,Guangzhao Cao,Hui-Qin Zou,Yonghong Yan
出处
期刊:Journal of Traditional Chinese Medical Sciences [Elsevier BV]
卷期号:7 (2): 221-227 被引量:8
标识
DOI:10.1016/j.jtcms.2020.03.004
摘要

Magnolia bark (Magnolia Officinalis REHD. & WILS. and Magnolia officinalis REHD. & WILS. VAR. biloba REHD. & WILS, Hou Po in Chinese), is widely applied in clinical prescriptions and Chinese patent medicines. Origin place is a crucial factor affecting the quality of Hou Po, and chemical composition is an important index for evaluating its quality, which is closely related to its clinical efficacy. This study aims to develop a novel method for rapidly, accurately and comprehensively identifying the origin places of Hou Po and predicting the contents of its important chemical components. High performance liquid chromatography was used to analyze the contents of magnolol and honokiol and ultra-performance liquid chromatography the contents of magnocurarine and magnoflorine. The cold soak method was used to determine the contents of water-soluble extracts. The E-nose and colorimeter were used to determine the odor and color characteristics, respectively, of the collected Hou Po samples. Using several statistical algorithms, different discriminant models based on the E-nose and colorimeter data were established to distinguish the origin place of Hou-Po and predict the chemical components of honokiol, magnolol, magnocurarine, magnoflorine and water-soluble extracts. The results showed that the Random Forest classifier combined with the ten-fold cross-validation method provided the highest classification accuracy for origin place, accounting for 99.53% among these models. The correlation coefficients between predicted and experimental values of the five chemical components were all higher than 0.96. This study has indicated that the electronic nose and colorimeter are promising methods for evaluating the quality of Chinese herbal medicines both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矫情的陈世美完成签到,获得积分20
刚刚
1秒前
4秒前
4秒前
4秒前
小马完成签到,获得积分10
4秒前
4秒前
5秒前
Accept完成签到,获得积分10
5秒前
ivVvyyy完成签到 ,获得积分10
6秒前
cdercder应助ZzzZzH采纳,获得10
6秒前
科研通AI5应助ZzzZzH采纳,获得10
6秒前
8秒前
9秒前
10秒前
FashionBoy应助自由保温杯采纳,获得10
10秒前
研友_LwbGg8发布了新的文献求助10
11秒前
11秒前
在水一方应助孔难破采纳,获得10
11秒前
11秒前
李子敬完成签到,获得积分10
11秒前
sansronds发布了新的文献求助10
11秒前
tt发布了新的文献求助10
13秒前
冰魂应助义气硬币采纳,获得10
13秒前
科研通AI5应助听话的捕采纳,获得10
14秒前
左手树完成签到,获得积分10
16秒前
莫比乌斯发布了新的文献求助10
16秒前
16秒前
研友_LwbGg8完成签到,获得积分10
16秒前
changye完成签到,获得积分20
17秒前
麻雀完成签到,获得积分10
17秒前
柚子完成签到,获得积分10
17秒前
18秒前
科研通AI5应助Komorebi采纳,获得10
19秒前
求知若渴的小王完成签到,获得积分10
19秒前
麻雀发布了新的文献求助10
20秒前
zhaoli发布了新的文献求助10
21秒前
健壮未来完成签到,获得积分20
22秒前
ding应助晚安886采纳,获得10
24秒前
24秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345103
关于积分的说明 10323728
捐赠科研通 3061700
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462