生物电子学
自愈水凝胶
材料科学
共形矩阵
弹性体
纳米技术
导电体
基质(水族馆)
粘附
导电聚合物
欧姆
聚合物
电阻抗
电导率
导线
电阻率和电导率
图层(电子)
柔性电子器件
光电子学
小型化
胶粘剂
水溶液
生物医学工程
压阻效应
组织工程
电阻和电导
生物相容性材料
作者
H Lee,Eunyoung Jeong,Heewon Choi,Jeong Uk Kim,Nathaniel S. Hwang,Donghee Son,Yoonsoo Shin,Dae-Hyeong Kim
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2026-01-01
卷期号:12 (1): eaeb9059-eaeb9059
标识
DOI:10.1126/sciadv.aeb9059
摘要
Establishing stable electrical communication between living tissues and bioelectronic devices requires soft, conductive, and conformable interfaces. Conductive hydrogels are attractive for this role because their hydrated polymer networks and mixed ionic/electronic conductivity reduce impedance and enhance charge transfer. Yet, challenges remain in integrating hydrogels with device components and achieving reliable tissue adhesion. Here, we present a materials and structural design strategy that enables electrically and mechanically robust devices through sequential formation of elastomer-metal-hydrogel multilayers and single-step laser patterning. The device consists of a micropillar-structured waterborne polyurethane substrate with a Au layer strongly bonded to the pillars, showing <2% resistance change under 28% strain. Functional hydrogels provide low interfacial impedance (~36.2 ohms at 1 kilohertz), effective insulation (~51,536 ohms at 1 kilohertz), and strong adhesion (~226 newtons per meter on cardiac tissue). Without elastomer-hydrogel decoupling, performance remains stable under dynamic aqueous conditions. Applied to rodent cardiac tissue, the integrated interface enables real-time electrocardiography monitoring and feedback-controlled electrical stimulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI